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Abstract

Let R be a set of red points and B a set of blue points on the plane. In this paper we
introduce a new concept, which we call coarseness, for measuring how blended the elements of
S = R ∪ B are. For X ⊆ S, let ∇(X) = ||X ∩ R| − |X ∩ B|| be the bichromatic discrepancy
of X. We say that a partition Π = {S1, S2, . . . , Sk} of S is convex if the convex hulls of its
members are pairwise disjoint. The discrepancy of a convex partition Π of S is the minimum
∇(Si) over the elements of Π. The coarseness of S is the discrepancy of the convex partition
of S with maximum discrepancy. We study the coarseness of bicolored point sets, and relate
it to well blended point sets. In particular, we show combinatorial results on the coarseness of
general configurations and give efficient algorithms for computing the coarseness of two specific
cases, namely when the set of points is in convex position and when the measure is restricted
to convex partitions with two elements.

1 Introduction

Let S be a set of n points on the plane in general position. A bicoloring of S is a partition of S into
two disjoint subsets R and B such that S = R ∪ B. A bicoloring of S will be denoted by {R,B}.
The elements of R and B are called the blue and red points of S respectively. We will assume that
R and B are non-empty and have r and b elements, respectively. If S is a point set, CH (S) will
denote the convex hull of S. A point set S is in convex position if the elements of S are the vertices
of a convex polygon.

Given a bicoloring {R,B} of S, the following problem is studied: How well blended are the elements
of R and B? In this paper, we will define a new concept, which we call the coarseness of a bicoloring
{R,B} of S, which can be used to study the previous problem. We will focus mainly on how to
calculate the coarseness of some families of bicolored point sets on the plane.

Intuitively speaking, given a bicoloring {R,B} of S, R and B are well blended if, at a glance,
the elements of R and B appear to be distributed uniformly on any convex region of the plane.
Unfortunately, experience dictates that when one attempts to give a formal definition of well blended
point sets, one always runs afoul, encountering numerous contradictions and counterexamples.
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For example, let us take a look at a seemingly easy problem. Let S be a set of n points on the real
line. How can we find a bicoloring {R,B} of S in such a way that R and B are well blended? One
may expect the following random procedure to generate well blended bicolored point sets: With
probability 1

2 randomly color the elements of S red or blue. Unfortunately, a simple exercise in
probability theory asserts that for any fixed k, as n grows, the probability converges to one that
the coloring of S obtained above contains monochromatic blocks of length greater than or equal to
k.

For the real line, we may argue that the colorings that best blend R and B are those in which
the colors of the elements of S alternate. These colorings are not likely to be obtained randomly
(the probability of alternating coloring is 1

2n−1 where n = |R|+ |B| and |R| = |B|). This example,
however, suggests what appears to be a good parameter to study. We say that a bicolored set of
points on the real line ` is well blended if in any interval I of ` the difference between the number
of red and the number of blue points of S is at most one. This in fact, solves the problem of finding
well blended bicolorings of point sets on the line.

The natural generalization of the above apparently good definition fails in the plane. Let S be a
set of points in general position on the plane. A subset I of S is an island if there is a convex set
C on the plane such that I = C ∩ S. Given a bicoloring {R,B} of S, the discrepancy of an island
of S, denoted by ∇(I), is the difference between the number of red and blue points of I, that is,
∇(I) = ||I ∩ R| − |I ∩ B||. An island I has discrepancy k if ∇(I) = k. We might now try saying
that a bicoloring {R,B} of S is well blended if the discrepancy of any island of S is bounded by a
constant.

For point sets in general position, this will never happen, since any bicolored point set S contains
islands with logarithmic discrepancy. In order to see this, we refer to a well known result by Erdős-
Szekeres [15] which states that any set with at least

(
2k−4
k−2

)
+ 1 points in general position contains

a subset of k points in convex position. Assume that |S| ≥
(
2k−4
k−2

)
+ 1, and consider any bicoloring

{R,B} of S. Let S′ be a subset of S in convex position with cardinality |S′| ≥ k. Let I1 be the
island of S obtained by intersecting S with the convex hull of S′. If the discrepancy of I1 is greater
than or equal to k

4 we are done. Assume w.l.o.g. that the number of red points in S′ is at least k
2 .

Then by removing from I1 all of the red points in S′, we obtain an island with discrepancy greater
than or equal to k

4 .

A more worrisome fact arises with point sets in convex position. Let S be a set of 2n points equally
spaced on a circle. Color each element of S red or blue in such a way that the colors of the elements
of S alternate when traversing the circle clockwise. At first glance, S appears to be well blended;
however it does contain monochromatic islands with n elements!

Clearly we must be careful how we define well blended point sets. In this paper we introduce a
reasonable parameter to detect well blended point sets, which we call the coarseness of S. With
this new measure, the concept of discrepancy is generalized from an object to a partition of the
point set. Intuitively speaking, if a bicoloring {R,B} of S is not well blended, we should be able
to split it into large convex blocks, each with large discrepancy; see Figure 1. We formalize the
definition as follows.

Let {R,B} be a bicoloring of S. For X ⊆ S, let ∇(X) = ||X ∩ R| − |X ∩ B|| be the bichromatic
discrepancy of X. We say that a partition Π = {S1, S2, . . . , Sk} of S is convex if CH (Si)∩CH (Sj) =
∅, Si, Sj ∈ Π. The discrepancy of a convex partition Π of S, d(S,Π), is the minimum ∇(Si) over
the elements of Π.
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Figure 1: a) A point set S that is not well blended. b) A partition of S into large blocks, each with large
discrepancy.

Definition 1. The coarseness of {R,B}, C({R,B}), is the discrepancy of the convex partition of
S with maximum discrepancy.

Given r and b, let C(S, r, b) be the smallest coarseness taken over all the bicolorings {R,B} of S
such that |R| = r, and |B| = b. Given two colorings {R,B} and {R′, B′} with |R| = |R′| and
|B| = |B′|, we say that {R,B} is better than {R′, B′} if the coarseness of {R,B} is smaller than
or equal to the coarseness of {R′, B′}.

Definition 2. A bicoloring {R,B} of S is well blended if the coarseness of {R,B} is within a
constant factor of C(S, r, b).

Let us examine again the example of 2n points on a circle whose colors alternate. It is easy to see
that in any convex partition of S, there must be an element, say Si, containing a set of consecutive
elements of S on the circle. The discrepancy of such Si, ∇(Si), is thus 0 or 1. It follows that the
coarseness of this bicoloring of S is equal to 1, and thus it is well blended.

Let us consider another example. Let S be the set of 4m2 points with integer coordinates (i, j),
1 ≤ i, j ≤ 2m colored as follows: A point (i, j) ∈ S is in B if i+ j is even, otherwise it is in R. Let
{S1, S2} be the partition of S such that S1 contains the points (i, j) ∈ S such that i+ j ≤ 2m+ 1,
and S2 = S \ S1; see Figure 2b). It is easy to see that ∇(S1) = m + 1, and ∇(S2) = m. Thus
C({R,B}) ≥ m.

Finally, let us briefly analyze bicolorings {R,B} of point sets in which R and B are linearly sepa-
rable; i.e., there is a line ` that leaves all the elements of R on one of the half-planes it determines,
and all the elements of B on the other. In this case, the partition {R,B} of S is convex, and thus
the coarseness of {R,B} is at least the minimum of r and b. Let us point out that in general the
partition {R,B} is not the optimal partition. To see this, let us consider R and B such that r ≥ 2b
as in Figure 2b). In Section 2 we will see that the optimal partition in this case is Π = {S}, and
thus C({R, B}) = ∇(S) = r − b.

1.1 Our contribution

We believe that the problem of calculating C(S, r, b) is NP -hard, and focus mainly on calculating
the coarseness of some families of bicolored point sets. Thus in the rest of this paper, we will
assume that we are given a set of points S with a fixed bicoloring, {R,B}, and focus mainly on the
algorithmic issues of calculating C({R,B}). To make our notation easier, instead of referring to a
bicoloring {R,B} of S, we will refer to S as S = R ∪B, and to C({R,B}) simply as C(S).
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Figure 2: a) A bicolored grid with coarseness 3. b) The coarseness is not given by the separation line `.

The remainder of the paper is structured as follows. In Section 2 we study some general properties
of the coarseness of bicolored point sets. In Section 3 we focus on point sets in convex position,
and in Section 4 we give properties for some specific configurations of well blended points. In
Section 5 we study the linear coarseness of bicolored point sets; that is, the maximum discrepancy
over all the convex partitionings of a bicolored point set into two subsets. We study some point
sets with minimum linear coarseness and prove that computing the linear coarseness of point sets
is 3SUM-hard.

1.2 Related work

It is important to observe that in our problem the cardinality of the convex partition is not fixed.
A related problem is the so-called k-clustering problem [5]: Given a set S of n points (non-colored)
in the plane and a fixed value k, compute a k-clustering (a partitioning of S into k islands) which
minimizes any monotone function of the diameters or the radii of the clusters. The fact that any
two clusters in an optimal solution can be separated by a line allows the k-clustering problem to be
solved in polynomial time. If we restrict ourselves to convex partitions of S with exactly k elements,
we obtain what we call the k-coarseness of S, denoted as Ck(S). When k = 1, the partition Π has
only one element, and thus C1(S) = ∇(S) = |r − b|. If k = 2 then we have what we call linear
coarseness; that is, the coarseness obtained by partitions of S induced by lines that split S into
two subsets. Clearly, the k-coarseness can be computed in polynomial time when k is a constant.
Since for any set of n points in the plane there are O(n6k−12) k-partitions into disjoint islands and
all of them can be computed within the same complexity [5], the k-coarseness of a bicolored set of
points can be found in O(n6k−11) time, k ≥ 3.

Note that our concept of coarseness is related to the study of uniform distributions [1, 19] and
could be applied in data analysis and clustering as follows. We say that S = R ∪B is not good for
clustering when its coarseness is low.

The concept of discrepancy has been used before in combinatorial geometry. In [2, 21] a parameter
known as the combinatorial discrepancy of hypergraphs is studied. The problem studied in these
papers is that of assigning to each vertex of a hypergraph either weight +1 or −1 in such a way
the maximum weight over all the edges of the hypergraph is minimized, where the weight of an
edge is the absolute value of the sum of the weights of its vertices. Another concept of discrepancy
is considered in [21], in which the authors study the problem of finding the most uniform way
of distributing n points in the unit square according to some criteria. In geometric discrepancy
theory [7] the following problem is addressed: How can n points on the plane be colored in such a way
that the difference between the number of red points and blue points within any disk is minimized?
Finally, we make reference to papers that consider the computation of geometric objects with
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maximum discrepancy and their applications to computer graphics and machine learning. These
papers [3, 11, 12, 16] consider the problem of computing a convex set Q such as a box, triangle, strip,
convex polygon, etc., such that the discrepancy of the subset of S contained in Q is maximized.

Partitionings of bicolored point sets into monochromatic islands with disjoint convex hulls have
been studied in [13]. If there is a partitioning Π of S into monochromatic islands with disjoint
interiors such that every island has at least k elements, then the coarseness of S is at least k.

In some cases, e.g. bicolored point sets in convex positions with 2n elements whose colors alter-
nate, any such partitioning has discrepancy 0 or 1. Unfortunately for some point sets with high
coarseness, any partitioning of them into monochromatic islands with disjoint interiors has con-
stant discrepancy. Consider the point set S consisting of two sets of points R and B which are
linearly separable by a line ` and contained in a circle of radius one centered at a point at distance
3 from the origin. In addition, S contains a set S′ of 2n points evenly distributed on the unit
circle centered at the origin, and such that ` bisects the elements of S′ evenly. It is not hard to see
that any convex partitioning of S into monochromatic islands with disjoint interiors always has an
island with one or two elements. However ` partitions S into two subsets each with discrepancy n.

2 Basic Properties

Let S = R ∪B, |R| = r, and |B| = b, and let X ⊆ R ∪B. We denote |X ∩R| − |X ∩B| by ∇′(X).
Observe that ∇(X) = |∇′(X)|. We say that X is majority-red, for short, m-red (resp. m-blue) if
∇′(X) > 0 (resp. ∇′(X) < 0). Let Π = {S1, S2, . . . , Sk} be a convex partition of S. We say that Π
is optimal if C(S) = d(S,Π). Let ri = |Si ∩R| and bi = |Si ∩B|, for i = 1, . . . , k.

The following lemmas list some basic properties of the coarseness of point sets.

Lemma 1. C(S) ≥ 1. If C(S) = 1, then |r − b| ≤ 1.

Proof. Suppose that S = {p1, p2, . . . , pr+b}. Let Π = {{p1}, {p2}, . . . , {pr+b}}. We have C(S) ≥
d(S,Π) = 1. Moreover, if C(S) = 1 then |r − b| = C1(S) ≤ C(S) = 1. �

Lemma 2. If Π = {S1, . . . , Sk} is an optimal convex partition of S and k ≥ 2, then there are two
elements Si and Sj of Π such that Si is m-red and Sj is m-blue.

Proof. Suppose that Si is m-blue for every index i. Then

b− r =

k∑
i=1

(bi − ri) =

k∑
i=1

∇(Si) >
k

min
i=1
∇(Si) = d(S,Π) = C(S),

which contradicts that C1(S) ≤ C(S). Therefore, it follows that Π contains m-blue and m-red
elements. �

Lemma 3. If a convex partition Π = {S1, . . . , Sk} of S contains an m-red and an m-blue element,
then d(S,Π) ≤ min{r, b}.

Proof. Suppose w.l.o.g. that S1 is m-red and S2 is m-blue. Then

d(S,Π) ≤ ∇(S1) = r1 − b1 ≤ r1 ≤ r
d(S,Π) ≤ ∇(S2) = b2 − r2 ≤ b2 ≤ b.

Hence d(S,Π) ≤ min{r, b}. �
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Lemma 4. If r ≥ 2b or b ≥ 2r, then C(S) = C1(S) = |r − b|.

Proof. Assume w.l.o.g. that r ≥ 2b. We have that C1(S) ≤ C(S). Suppose now that Π is an optimal
convex partition of S with cardinality bigger than one. By Lemma 2, Π contains m-red and m-blue
elements, thus d(S,Π) ≤ min{r, b} by Lemma 3. Then C(S) = d(S,Π) ≤ min{r, b} = b ≤ r − b =
C1(S). This implies that C(S) = C1(S). �

Lemma 5. If R and B are linearly separable, and b ≤ r < 2b or r ≤ b < 2r, then C(S) = min{r, b}.

Proof. Suppose w.l.o.g. that b ≤ r < 2b and let Π be an optimal convex partition of S. Π can not
have cardinality one because C1(S) = r − b < b = d(S, {R,B}). Therefore by Lemma 2, Π has
m-red and m-blue elements implying, by Lemma 3, that C(S) = d(S,Π) ≤ min{r, b} = b. Since
d(S, {R,B}) = b then C(S) = b. �

Remark 1. It follows easily from Lemmas 4 and 5 that if R and B are linearly separable, and
b ≤ r < 2b or r ≤ b < 2r, then C(S) = min{r, b}, otherwise C(S) = |r − b|.

We now prove:

Lemma 6. Let Π = {S1, . . . , Sk} be a convex partition of S. Then d(S,Π) ≤ r+b
k .

Proof.

d(S,Π) =
k

min
i=1
∇(Si) ≤

1

k

k∑
i=1

∇(Si) =
1

k

k∑
i=1

|ri − bi| ≤
1

k

k∑
i=1

(ri + bi) =
r + b

k

�

Remark 2. It is worth noting that if C(S) is large with respect to the cardinality of S, then there
exists an optimal convex partition of S with few elements. For point sets with small coarseness,
the cardinality of an optimal convex partition can be small or large; see Figure 3.

a) b)

ℓ

Figure 3: Two point sets with coarseness 3. In a) the coarseness is determined by the convex partition
induced by line `. In b) the coarseness is obtained by using the subsets determined by the triangles shown.
These examples can be generalized to point sets with n = tm points and coarseness t.

The following lemma states a relation between the members of a minimum-cardinality optimal
convex partition. It shows that in an optimal convex partition with minimum cardinality, one can
not join two or more members having the same majority color (i.e. m-red or m-blue) because the
convex hull of the resulting member contains points of other members of the partition.
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Lemma 7. If Π is a minimum-size optimal convex k-partition and Si, Sj ∈ Π are both m-red (or
m-blue), then k ≥ 3. Moreover CH (Si ∪ Sj) ∩ Sl 6= ∅ for every l 6= i, j.

Proof. Suppose that CH(Si ∪ Sj) ∩ Sl = ∅ for every l = 1, . . . , k, l 6= i, j. Then, the partition
Π′ = (Π \ {Si, Sj}) ∪ {Si ∪ Sj} is a convex partition of S so that d(S,Π) ≤ d(S,Π′) because
min{∇(Si),∇(Sj)} < ∇(Si) +∇(Sj) = ∇(Si ∪ Sj). This is a contradiction since the cardinality of
Π′ is k − 1. �

3 Point Sets in Convex Position

Let S be a point set in convex position. A subset of S is called S-consecutive if it is empty or its
elements are consecutive vertices of CH (S).

Lemma 8. If S is in convex position, then any convex partition Π = {S1, . . . , Sk} of S with k > 1
has at least two elements Si and Sj which are S-consecutive.

Proof. We assume that Si 6= ∅ for every i. The proof is by induction on r + b. If r + b = 1 then it
is trivial. Now suppose that r+ b > 1. Let Π = {S1, S2, . . . , Sk} be any convex partition of S, and
suppose that the elements of S1 are not S-consecutive. Then S \ S1 is composed of at least two
maximal S-consecutive chains. Let C be one of these chains. If C is not an element of Π then C
is partitioned into at least two sets (induced by Π) and the claim follows by induction. Otherwise
each chain in S \ S1 is an element of Π and the lemma follows. �

A point set S in convex position is called an alternating convex chain if we can label its elements
p1, p2, . . . , pr+b counterclockwise along CH (S) so that for every 1 ≤ i < r + b, pi and pi+1 do not
have the same color (Figure 4).

a) b)

Figure 4: Alternating convex chains. a) 5 red points and 5 blue points, b) 6 red points and 5 blue points.

Lemma 9. If S is in convex position then C(S) = 1 if and only if S is an alternating convex chain.

Proof. Suppose that C(S) = 1 and that S is not an alternating convex chain. By Lemma 1,
|r− b| ≤ 1. If r = b and for some i we have that pi and pi+1 have the same color, then the partition
Π = {{pi, pi+1}, S \ {pi, pi+1}} has coarseness two. If r = b+ 1 and there is an 1 ≤ i < r + b such
that pi and pi+1 are blue points, then if S1 = {pi, pi+1}, we have that ∇(S1) = 2, ∇(S \ S1) = 3,
and then C(S) ≥ d(S,Π) = 2. Thus S is an alternating convex chain.

Suppose now that S is an alternating convex chain. By Lemma 8, any convex partition Π =
{S1, S2, . . . , Sk} of S has at least two S-consecutive elements, and thus for at least one of them,
say Si, ∇(Si) is 1 or 0. Then d(S,Π) ≤ 1. �
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Theorem 1. If S is in convex position, then C(S) = maxk=1,2,3 Ck(S).

Proof. Let d = C(S), and observe that 0 ≤ ∇(S) ≤ d. Assume w.l.o.g. that 0 ≤ ∇′(S) ≤ d. Let
Π = {S1, S2, . . . , Sk} be an optimal convex partition of S of minimum cardinality. By definition,
∇(Si) ≥ d (1 ≤ i ≤ k). Suppose that k > 3. By Lemma 8, S has at least two S-consecutive
elements, say S1 and S2. If either of S1 or S2, say S1, is such that ∇′(S1) ≤ −d, then ∇′(S \ S1) =
∇′(S)−∇′(S1) ≥ 0+d = d, and thus ∇(S \S1) = |∇′(S \S1)| ≥ d. This is a contradiction since the
convex partition Π′ = {S1, S\S1} has cardinality 2 and d(S,Π′) ≥ d. Suppose then that ∇′(S1) ≥ d
and ∇′(S2) ≥ d. Observe that ∇′((S\S1)\S2) = ∇′(S)−∇′(S1)−∇′(S2) ≤ d−d−d = −d, and thus
∇((S\S1)\S2) = |∇′((S\S1)\S2)| ≥ d. This is a contradiction because Π′′ = {S1, S2, S\(S1∪S2)}
has cardinality 3 and d(S,Π′′) ≥ d. �

Our objective now is to prove that the coarseness of point sets in convex position can be computed
in O(n log n) time. First we will show how to solve two problems on circular sequences of real
values. These problems may also be of independent interest.

3.1 Two Maximum Weight Problems on Circular Sequences

Consider a set X of n points on a circle labeled clockwise with real numbers x0, . . . , xn−1. An
interval [xi, xj ] of X is the subset containing the points xi, xi+1, . . . , xj with addition taken mod n.
The weight w[xi, xj ] of [xi, xj ] is defined as xi+xi+1+· · ·+xj . In this section the following problems
will be solved:

Problem 1 (The Maximum Weight Interval of a Circular Sequence Problem, abbreviated MWI-Prob-
lem). Find the interval of X with maximum weight.

Problem 2 (The Max-Min Two Interval Problem, abbreviated MM2I-Problem). Find two disjoint
intervals [xi, xj ] and [xk, x`] of X such that the minimum of w[xi, xj ] and w[xk, x`] is maximized.

We give an outline of how to solve the MWI-Problem, and a more detailed solution to the MM2I-
Problem.

To start with, we see that the MWI-Problem is a small variation of the well known Bentley’s
maximum-weight interval problem [4]. More specifically, letX = (x0, . . . , xn−1) be a linear sequence
of n real values. An interval [xi, xj ] of X contains the elements xi, xi+1, . . . , xj , i ≤ j. Bentley’s
problem is that of finding the interval of X with maximum weight. Observe that in Bentley’s
problem, i ≤ j, whereas in the MWI-Problem this is not necessarily the case. It is well known that
Bentley’s problem can be solved in linear time.

Observe that if a solution [xi, xj ] to the MWI-Problem is such that 0 ≤ i ≤ j ≤ n − 1, then the
solution obtained by solving Bentley’s problem on (x0, . . . , xn−1) is [xi, xj ]. Otherwise, [xi, xj ] is
the union of two disjoint intervals [x0, xi] and [xj , xn−1] maximizing w[x0, xi] + w[xj , xn−1]. This
case can be solved in linear time; see [9] for more detail.

We show now how to solve the MM2I-Problem in O(n log n) time. In [8] the authors solve the
following problem, which they call the Range Maximum-Sum Segment Query Problem with Two
Query Intervals:

Problem 3 (RMSQ2-Problem). Preprocess in linear time a given sequence X = (x1, . . . , xn) of
real numbers such that for any i ≤ j ≤ k ≤ `, the following query can be answered in constant time:
Find the interval [xs, xt] of maximum weight such that i ≤ s ≤ j and k ≤ t ≤ `.
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Remark 3. If i = j = k in the above problem, [xs, xt] will be the interval of maximum weight
contained in [xi, x`] starting at xi.

Let X ′ = (x0, . . . , xn−1, xn, . . . , x2n−1), where xn+i = xi, i = 0, . . . , n − 1. Preprocess X ′ as in [8]
to solve the RMSQ2-Problem.

Let I1 = [xi, xj ] and I2 = [xk, x`] form an optimal solution to the MM2I-Problem, and suppose
w.l.o.g. that i ≤ j < k. We solve now the MM2I-Problem in O(log n) time for a fixed value of i,
0 ≤ i ≤ n− 1.

For simplicity assume that i = 0. Let I1 = [x0, xj ] and I2 = [xk, x`] be an optimal solution to
our problem. Notice that there exists an index t such that j ≤ t < k. Let I1(t) be an interval of
maximum weight contained in [x0, xt] that starts at x0. By Observation 3, I1(t) can be found in
constant time. Let I2(t) be the interval of maximum weight contained in [xt+1, xn−1]. This can
also be found in constant time. Observe that by the way we choose I1 and I2, we can assume that
I1 and I2 are I1(t) and I2(t), respectively. Then the MM2I-Problem consists of finding a value of t
so that min{w(I1(t)), w(I2(t))} is maximum.

Suppose now that for a given t, w(I1(t)) ≤ w(I2(t)). Then we can discard all indexes t′ < t
since min{w(I1(t

′)), w(I2(t
′))} ≤ w(I1(t

′)) ≤ w(I1(t)) = min{w(I1(t)), w(I2(t))}. The case when
w(I1(t)) > w(I2(t)) is analogous. It now follows that we can search for t in a logarithmic number
of steps. Since the RMSQ2-Problem can be used to obtain both I1(t) and I2(t) in constant time,
t can be found in logarithmic time. We repeat this procedure for i = 1, . . . , n − 1 by using the
preprocessing done in X ′ and choosing I1 and I2 in the interval [xi, xi+n−1] of X ′. Thus we have
proved:

Theorem 2. The MM2I-Problem can be solved in O(n log n) time.

3.2 Computing the Coarseness of Point Sets in Convex Position

Theorem 3. The coarseness of a point set S in convex position can be computed in O(n log n)
time and O(n) space.

Proof. Suppose w.l.o.g. that b ≤ r. By Lemma 4, if r ≥ 2b, then C(S) = C1(S) = r − b. Suppose
then that this is not the case. By Theorem 1, we have to compute the maximum among C1(S),
C2(S), and C3(S). Assign weights to the elements of S as follows; red points are weighted +1, and
blue points −1. We can now consider S as a weighted circular sequence.

Computing C2(S): By Lemma 2, any optimal convex partition contains an m-red element and
an m-blue element. Let Π = {S1, S2} be a convex partition of S such that S1 is m-blue and S2 is
m-red; see Figure 5a). We have that ∇(S2) = r2 − b2 = (r − r1) − (b − b1) = r − b + b1 − r1 =
r − b+∇(S1) ≥ ∇(S1), and thus d(S,Π) = ∇(S1). Then d(S,Π) is maximum if and only if ∇(S1)
is maximum. In this case, S1 corresponds to an interval of S with minimum weight (i.e., S2 has
maximum weight). This is an instance of the MWI-Problem and can be solved in linear time.

Computing C3(S): Assume that C(S) = C3(S). Let Π = {S1, S2, S3} be an optimal convex
partition of S; see Figure 5 b). It is easy to see that if Si is m-blue (resp. m-red) then Si+1 is
m-red (resp. m-blue), i = 1, 2. Moreover d(S,Π) is ∇(S1) or ∇(S3), otherwise d(S,Π) ≤ d(S, {S1 ∪
S2 ∪ S3}) = C1(S). If both S1 and S3 are m-blue, then d(S,Π) is at most C2(S). Then S1 and S3
are m-red, and thus computing C3(S) reduces to the problem of finding two disjoint intervals in S
such that the minimum weight of both is maximized. By Theorem 2 we can solve this problem in
O(n log n) time. �
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S1 S1

S3

S2

a) b)

Figure 5: Points in convex position. a) Computing C2(S); b) computing C3(S).

4 Point Sets in General Position

The problem of determining the coarseness of point sets in general position seems to be nontrivial.
We are unable even to characterize point sets whose coarseness is just one. Let us recall that by
Remark 2, the cardinality of an optimal convex partition can be small or large, so we have no
idea in advance of the number of elements in an optimal partition. In this section we study some
particular families of point sets.

Proposition 1. For all n ≥ 4, there are bichromatic point sets of size n, not in convex position,
with coarseness one.

Proof. Let S be a point set consisting of the vertices of a regular polygon P with 2n vertices together
with an extra point p close to the center of P. Color the vertices of P red or blue in such a way that
adjacent vertices receive different color, and color p red; see Figure 6a). Let Π = {S1, S2, . . . , Sk}
be any convex partition of S. If k = 1 then d(S,Π) = 1. Suppose that k > 1. Then there is some
Si ∈ Π (1 ≤ i ≤ k) such that p 6∈ Si and Si contains a set of consecutive vertices of P. Then,
∇(Si) ≤ 1 and therefore d(S,Π) ≤ 1.

For n = 2m+ 2, let S consist of the vertices of P, colored as before, plus two points p and q in the
interior of P close enough to the middle of an edge e of P such that the line joining them is almost
parallel to e. It is now easy to see that C2(S) = 1 and that d(S,Π) ≤ 1 for all convex partitions Π
of S; see Figure 6 b). �

a) b)

p p
q

o m

d− 2r − b+ d− 2

c α

c)

Figure 6: In a) (resp. b)), we show a point set with discrepancy one and an odd (resp. even) number of
points. In c), we show a point set in general position with r red points and b blue points. Its coarseness is
equal to d, where max{1, |r − b|} < d ≤ b.

Constructing point sets with large coarseness is straightforward. If R and B are linearly separable
then C(S) ≥ min{r, b}. Next we prove:

Proposition 2. Let b ≤ r < 2b, and d be an integer such that max{1, |r− b|} < d ≤ b. Then there
exists a set of S with r red points and b blue points, not in convex position, such that C(S) = d.
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Proof. We construct S as follows. Let c be a circle centered at the origin O, and let α be an arc
of c of length π

2 . Let m be the point such that the midpoint of the segment joining O to m is the
midpoint of α. On a small circle c′ centered at O place r− b+d−2 uniformly spaced red points. In
a similar way, place d−2 uniformly spaced blue points on a small circle whose center is m. Finally,
place a set T of b− d+ 2 pairs of points pi, qi close enough to α such that each pair contains a red
and a blue point as shown in Figure 6c), i = 1, . . . , b− d+ 2. The following is easy to prove: If Q is
an m-blue subset of S, then ∇(Q) ≤ d. It now follows that for any convex partition Π of S with at
least two elements, d(S,Π) ≤ d, and thus C(S) ≤ d. Since C1(S) = d > r − b, it follows that C(S)
is not C1(S).

Now choose two pairs of points pi, qi and pj , qj in T , and let ` be the line that passes through
the midpoints of the segments determined by pi, qi and pj , qj . Let S′ and S′′ be the subsets of S
determined by `. Then d(S, {S′, S′′}) = min{r − b+ d, d} = d. Hence C(S) = d. �

Let C1, . . . , Ct be a family of sets of points such that each Ci is in convex position. We say that
C1, . . . , Ct is nested if the elements of Ci+1 belong to the interior of CH (Ci), i = 1, . . . , t− 1. The
following results deal with families of nested even alternating convex chains; that is, each Ci is an
alternating convex chain containing an even number of points; see Figure 7 a).

Lemma 10. Let C1, . . . , Ct be a nested family of point sets in convex position, S = C1 ∪ · · · ∪ Ct,
and let Π = {S1, . . . , Sk} be a convex partition of S. Then there is an element Si such that Si ∩Cj
is Cj-consecutive for j = 1, . . . , t.

Proof. The proof is by induction on t. For t = 1 the result follows from Lemma 8. Suppose that
t > 1 and let Π = {S1, . . . , Sk} be any convex partition of S. If Si ⊂ C1 for some i ∈ {1, . . . , k}, then
the result follows again from Lemma 8. Let Π1 = {S1 \ C1, . . . , Sk \ C1}. Π1 is a convex partition
of S \ C1, and by induction there is a subset Si ∈ Π such that Si \ C1 ∈ Π1 and Cj ∩ (Si \ C1) is
Cj-consecutive for j = 2, . . . , t. If Si ∩C1 is C1-consecutive our result follows. Otherwise, it is easy
to see that there is another element Sl ∈ Π such that Sl ⊂ C1. Our result follows. �

Proposition 3. Let C1, . . . , Ct be a family of nested even alternating convex chains, and S =
C1 ∪ · · · ∪ Ct. Then C(S) ≤ t. In some cases, C(S) = t.

Proof. Let Π = {S1, . . . , Sk} be a convex partition of S. By Lemma 10, there is at least one Si ∈ Π
such that Si ∩ Cj is Cj-consecutive for j = 1, . . . , t. Then ∇(Si ∩ Cj) ≤ 1 for j = 1, . . . , t. But
d(S,Π) ≤ ∇(Si) ≤

∑t
j=1∇(Si ∩ Cj) ≤ t and C(S) ≤ t.

Let Wm be the set of 4m2 points with integer coordinates (i, j), 1 ≤ i, j,≤ 2m, and such that if
i + j is even the point is colored blue, otherwise it is colored red. We call such a point set an
m-chessboard. Note that Wm is the union of m nested even alternating convex chains, and thus
C(S) ≤ m. Let ` be a line with slope π

2 that leaves 1 + · · ·+ 2m− 1 elements of Wm below it; see
Figure 2 b). Then the partition of Wm induced by ` has coarseness t. It is clear that Wm can be
perturbed a bit so that all of its points are in general position without changing our results. �

The idea of the t-chessboard can be generalized as in Figure 7b), in which there is a line ` such
that in each of the half-planes defined by `, all t chains have the same majority color. It results in
interesting cases depending on the value of t. If S is formed by t even alternating convex chains

with 4t points each, then C(S) = t =
√
4t2

2 =
√
n
2 . If S is a set of n = 22

m
(m ≥ 1) points

distributed in t = 2m = log2 n even alternating convex chains of length 22
m−m = n

log2 n
each, then

C(S) = t = log2 n.
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a) b)

ℓ

Figure 7: a) A configuration of 3 nested even alternating convex chains. b) A generalization of the m-
chessboard.

5 Partitions With a Line

In this section we will characterize sets with linear coarseness one and show how to decide if the
linear coarseness of a bicolored point set is equal to a given d. The following notation will be
introduced.

Consider a non vertical line ` containing no points in S, and let Π`+ and Π`− be the open half-
planes bounded below and above respectively by `. Let S`+ = S ∩ Π`+ , S`− = S ∩ Π`− , and
Π` = {S`+ , S`−}. The linear coarseness of S is C2(S) = max` d(S,Π`).

The following proposition is straightforward.

Proposition 4. Let S = R∪B such that r = b and C2(S) = 1. Then the following properties hold:

1. The convex hull of S is an alternating chain.

2. When we project the points of S on any line, they form a sequence in which no three consec-
utive points have the same color.

3. For every point p ∈ S on the convex hull of S, the angular ordering of the elements of S \{p}
with respect to p is a sequence with alternating colors.

4. For every line ` passing through two points of the same color, say red, the number of red
points in each of S`+ and S`− is exactly one less than the number of blue points in S`+ and
S`−, respectively.

Item 2 in Proposition 4 is not sufficient to guarantee that C(S) = 1; see, for example, Figure 8a). If
r 6= b, items 3 and 4 in the proposition are not necessarily true; see Fig 8b) and c). We now show
that if r = b, item 4 is sufficient.

The next result, proven in [10], will be useful:

Theorem 4. Let P and Q be two disjoint convex polygons in the plane. Then there is at least one
edge e of P or Q such that the line `e containing e separates the interior of P from the interior of
Q. See Figure 9.

Lemma 11. If r = b, then the following two conditions are equivalent: (a) C2(S) = 1; (b) for every
line ` passing through two points of S with the same color, ∇(S`+) = ∇(S`−) = 1.

12



p
q

p

q

s

a) b) c)

Figure 8: a) There are no three consecutive points of the same color in the projection of S on any line and
C2(S) = 2, b) the red points q and s are consecutive in the angular sorting of S \ {p} with respect to p and
C2(S) = 1, c) the number of red and blue points in the half-plane above the line through p and q is zero and
C2(S) = 1 because S is an alternating convex chain.

P

Q

Figure 9: Two convex polygons P and Q and a separating line `e containing the edge e of Q.

Proof. It is easy to prove that (a) implies (b). We show here that (b) implies (a). Suppose that
C2(S) = d ≥ 2. We now show that there exists a line ` containing two points of the same color of
S such that {∇(S`−),∇(S`+)} = {d, d− 2}.

Let `0 be a line containing no elements of S such that C2(S) = d(S,Π`0) = d. Assume w.l.o.g.
that `0 is horizontal. Since r = b we have that C2(S) = d(S,Π`0) = ∇(S`+0

) = ∇(S`−0
) = d and

∇′(S`+0 ) = −∇′(S`−0 ). Assume w.l.o.g. that ∇′(S`+0 ) > 0 (i.e. S`+0
is m-red and S`−0

is m-blue).

Let P and Q be the polygons induced by the convex hulls of S`+0
and S`−0

, respectively. Let p be a

vertex of P such that there is a line `′ passing through p that separates P from Q. Then p must
be a red point, for otherwise by translating `′ up by a small distance, we obtain a convex partition
Π′ of S with coarseness d + 1. Similarly any point q in Q such that there is a line through q that
separates P from Q must be blue.

By Theorem 4, there is an edge e of P or Q, with vertices p and q, such that the line `e containing
e separates P from Q. If e is an edge of P , then by using the above observation it can be shown
that p and q are red. Thus {∇(S`+e ),∇(S`−e )} = {d, d − 2}. A symmetric argument works when e
belongs to Q. �

The next proposition gives lower and upper bounds on the linear coarseness.

Proposition 5. max
{

1, b |r−b|2 c
}
≤ C2(S) ≤ max

{
b |r−b|2 c,min {r, b}

}
. Furthermore, both bounds

are tight.

Proof. Suppose w.l.o.g. that r ≥ b. By the Ham Sandwich Theorem [18] there exists a line ` that
passes through at most one red point and at most one blue point, such that |S`+ ∩R| = |S`− ∩R| =
b r2c and |S`+ ∩ B| = |S`− ∩ B| = b b2c. Four cases arise depending on the parities of r and b. Here
we only show the case when r and b are even. The other cases can be solved in a similar way.
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If r = 2a and b = 2c then ` contains no point of S, and ∇(S`+) = ∇(S`−) = a − c = b r−b2 c. Thus

b r−b2 c = d(S,Π`) ≤ C2(S).

If |r − b| ≥ 2 then C2(S) ≥ b |r−b|2 c ≥ 1; thus what remains to be proved is that C2(S) ≥ 1 when
|r−b| ≤ 1. Suppose w.l.o.g. that b ≤ r ≤ b+1. If there is a blue point p on the convex hull of S, take
a line ` separating p from S\{p} and suppose that p ∈ S`+ ; then∇(S`+) = 1, ∇(S`−) = r−b+1 ≥ 1,
and C2(S) ≥ d(S,Π`) = 1. If no such p exists, there are two consecutive red points p and q in the
convex hull of S. Take a line ` separating p and q from S \ {p, q} and suppose that p, q ∈ S`+ ; then
∇(S`+) = 2, ∇(S`−) = b− r + 2 ≥ 1 and C2(S) ≥ d(S,Π`) = 1. This proves the lower bound.

Let us show now that this lower bound is tight. Suppose w.l.o.g. that r > b and let X be a set of
r red points and r blue points, and let Y be a set of r− b red points. Put the elements of X on an
alternating convex chain and the elements of Y in the interior of the convex hull of X in such a way
that there is a line `e such that d(X,Π`e) = 0 and `e splits Y into two subsets of cardinality b |Y |2 c
and d |Y |2 e, respectively. Let S = X ∪ Y and observe that d(S,Π`e) = b |Y |2 c = b r−b2 c. For any line
` we have that d(X,Π`) ∈ {0, 1} (by Lemma 9). If d(X,Π`) = 0, then d(S,Π`) = d(X ∪ Y,Π`) =

d(Y,Π`) ≤ b |Y |2 c = b r−b2 c. If d(X,Π`) = 1 then d(X ∪ Y,Π`) = min{x − 1, (r − b) − x + 1} where
x is such that ` splits Y into x and (r − b) − x points, respectively. It is easy to prove that
min{x− 1, (r − b)− x+ 1} ≤ b r−b2 c. Then C2(S) = d(S,Π`e) = b r−b2 c.

To prove the upper bound, suppose w.l.o.g. that r ≥ b (i.e. b = min{r, b}). We have to show
that d(S,Π`) > b ⇒ d(S,Π`) ≤ b r−b2 c for every line `. Let ` be a line such that d(S,Π`) > b.
Then we have ∇′(S`+) > 0 and ∇′(S`−) > 0. In fact, suppose that ∇′(S`+) < 0; then ∇(S`+) =
|S`+ ∩ B| − |S`+ ∩ R| ≤ |S`+ ∩ B| ≤ b. Thus d(S,Π`) ≤ b, a contradiction. Now ∇′(S`+) > 0 and
∇′(S`−) > 0 imply that d(S,Π`) ≤ b r−b2 c. In fact, suppose the contrary; ∇(S`+) ≥ b r−b2 c + 1 and

∇(S`−) = (r − b) −∇(S`+) ≥ b r−b2 c + 1. Then r − b ≥ 2b r−b2 c + 2, a contradiction. If b r−b2 c ≤ b,

the upper bound is tight if we take separable sets R and B. If b r−b2 c > b, we have shown how to

build a set of points S with C2(S) = b r−b2 c. �

Corollary 1. Let |r − b| ≥ 2. If r ≥ 3b or b ≥ 3r. Then C2(S) = b |r−b|2 c.

Proof. Suppose that r ≥ 3b. Then r − b ≥ 2b ⇒ r−b
2 ≥ b ⇒ b r−b2 c ≥ b. Thus the upper and lower

bounds on C2(S) in Proposition 5 are equal. �

5.1 Hardness

In this subsection we prove that computing the linear coarseness of a bicolored point set is 3SUM-
hard [17]. We also give an optimal O(n2)-time algorithm to calculate it.

Theorem 5. Let d be an integer greater than or equal to 1. Then deciding if C2(S) = d is 3SUM-
hard.

Proof. We will use a reduction from the 3SUM-problem similar to the 3SUM-hardness proof of the
3-POINTS-ON-LINE problem [17]. Consider the set X = {x1, . . . , xn} of n integer numbers, an
instance of the 3SUM-problem, and assume w.l.o.g. that x1 < · · · < xj < 0 < xj+1 < · · · < xn
(1 ≤ j < n). Let M = max{|x1|, |xn|}. If d = 1, put a blue point in (−2M, 0) and a red point in
(2M, 0). If d > 2, then for each 1 ≤ i ≤ d− 2 put a red point in (−2M − i+ 1, 0) and a blue point
in (2M + i − 1, 0). Let ε be a real positive number such that ε < 1

6M2 . For each 1 ≤ i ≤ n put a
red point pi in (xi − ε, x3i ) and a blue point qi in (xi + ε, x3i ); see Figure 10. Since ε < 1

6M2 , we can
prove that there is a line separating three distinct pairs (pi, qi), (pj , qj), and (pk, qk) if and only if
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(xi, x
3
i ), (xj , x

3
j ), and (xk, x

3
k) are collinear (i.e., xi + xj + xk = 0). See Appendix for more detail.

Let S be the set of red and blue points as above. We have that C2(S) ≥ d, because d(S,Π`) = d
for every line ` separating exactly two distinct pairs (pi, qi) and (pj , qj). If C2(S) > d, then there is
a line separating more than two pairs, implying that three elements in X sum to zero. Therefore,
three elements in X sum to zero if and only if C2(S) 6= d. �

y = x3

p1

pi

x

y

qi

Figure 10: Reduction from the 3SUM-problem when d = 5.

Theorem 6. Computing the linear coarseness of a bicolored point set S is 3SUM-hard and can be
done in O(n2) time.

Proof. The hardness is due to Theorem 5, and duality can be used to compute C2(S). �

5.2 The Weak Separator Problem

Given a bichromatic set of points in the plane, the Weak Separator Problem (WS-problem) looks for
a line that maximizes the sum of the number of blue points on one side of it and the number of red
points on the other. The WS-problem can be solved in O(n2) [20] or in O(nk log k + n log n) time,
where k is the number of misclassified points [14]. An O((n + k2) log n) expected-time algorithm
was presented recently in [6]. We prove that the WS-problem is 3SUM-hard.

Lemma 12. Let S = R ∪ B with r = b. Solving the WS-problem for S is equivalent to finding a
line ` such that d(S,Π`) = C2(S).

Proof. Let ` be any line such that d(S,Π`) = C2(S). Since r = b then∇′(S`+) = −∇′(S`−). Suppose
w.l.o.g. that d(S,Π`) = ∇′(S`+) = |S`+ ∩R| − |S`+ ∩B| > 0. We have that |S`+ ∩R|+ |S`− ∩B| =
|S`+ ∩R|+ |B| − |S`+ ∩B| = b+ |S`+ ∩R| − |S`+ ∩B|. Hence |S`+ ∩R|+ |S`− ∩B| is maximum if
and only if |S`+ ∩R| − |S`+ ∩B| = C2(S) is maximum. �

Theorem 7. The WS-problem is 3SUM-hard.

6 Conclusions

In this paper we have presented a new parameter, coarseness, to measure how blended a bicolored
set of points is. Firstly, we introduced a definition of discrepancy for a convex partition of the
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bicolored point set and, the concept of coarseness then uses convex partitions of the points to
determine if the set admits big blocks in such a way that a color dominates in each of them.

We provided useful combinatorial properties on the coarseness, and a complete characterization
if R and B are linearly separable. As an interesting result, it was shown that the coarseness of
points in convex position can be computed in O(n log n) time by using a reduction to instances of
problems on circular sequences of weighted elements. The case in which the coarseness is induced
by partitions with a straight line was also studied, and we gave exact combinatorial lower and
upper bounds on the value of coarseness. Furthermore, we showed that computing this type of
coarseness is 3SUM-hard [17]. Additionally, and as a consequence, we proved that the well-known
Weak Separator Problem [6, 14, 20] is also 3SUM-hard.

In view of the results obtained in this paper, we believe that the problem of finding the coarseness
of bicolored sets is NP-hard. An interesting problem is that of finding efficient algorithms to
approximate the coarseness.

7 Acknowledgements
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A Appendix

Lemma 13. Let a, b and c be three distinct integers and M = max{|a|, |b|, |c|}. Let ε be a
real positive number such that ε < 1

6M2 . Then there is no line that simultaneously intersects the
horizontal segments [a − ε, a + ε] × a3, [b − ε, b + ε] × b3 and [c − ε, c + ε] × c3 unless the points
(a, a3), (b, b3) and (c, c3) are collinear.

Proof. Suppose w.l.o.g. that a < b < c. For a given ε > 0, denote the horizontal segments
[a− ε, a+ ε]× a3, [b− ε, b+ ε]× b3, and [c− ε, c+ ε]× c3, respectively as sa, sb, and sc. Let δ(b, ac)
be the horizontal distance from (b, b3) to the line through (a, a3) and (c, c3). Then we have:

δ(b, ac) =

∣∣∣∣b− ((b3 − a3) c− a
c3 − a3

+ a

)∣∣∣∣
=

∣∣∣∣b− a− (b− a)(b2 + ab+ a2)

c2 + ac+ a2

∣∣∣∣
=

∣∣∣∣(b− a)

(
1− b2 + ab+ a2

c2 + ac+ a2

)∣∣∣∣
=

∣∣∣∣(b− a)

(
c2 − b2 + ac− ab
c2 + ac+ a2

)∣∣∣∣
=

∣∣∣∣(b− a)(c− b)(a+ b+ c)

c2 + ac+ a2

∣∣∣∣
= (b− a)(c− b) |a+ b+ c|

|c2 + ac+ a2|
.

If a+ b+ c = 0 then δ(b, ac) = 0, and thus (a, a3), (b, b3), and (c, c3) are collinear, and for all ε > 0
the line through them intersects the segments sa, sb, and sc.

Now suppose that a+ b+ c 6= 0 (i.e., |a+ b+ c| ≥ 1). Since a < b < c, we have that b− a ≥ 1 and
that c− b ≥ 1. Therefore

δ(b, ac) ≥ 1

|c2 + ac+ a2|
≥ 1

|c|2 + |a||c|+ |a|2
≥ 1

3M2
.

Note that for a given ε > 0 there is no line that intersects sa, sb, and sc if and only if 2ε < δ(b, ac).
This can be ensured if ε < 1

6M2 . Hence the result follows. �
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