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Abstract

Let P2n be a point set in the plane with n red and
n blue points. Let CR and CB (SR and SB) respec-
tively be red and blue colored and disjoint disks (axis-
parallel squares). In this paper we prove the follow-
ing results. Finding the positions for CR and CB that
maximizes the number of red points covered by CR

plus the number of blue points covered by CB can be
done in O(n3 log n) time. Finding two axis-parallel
unit-squares with disjoint interiors that maximizes the
sum of the red points covered by SR plus the number
of blue points covered by SB can be done in O(n2)
time.

1 Introduction

Consider a point set P2n with n red and n blue points,
and a red and a blue coin (not necessarily of the same
size) denoted by CB and CR respectively. In this pa-
per we study the following problem. Place CR and
CB on the plane such that the number of red points
covered by CR plus the number of blue points cov-
ered by CB is maximized. We allow CB and CR to
cover some red (resp. blue) points, but require them
to have disjoint interiors. We also consider the prob-
lem of finding two isothetic squares SB and SR of
given sizes with disjoint interiors such that the num-
ber of red points covered by SR plus the number of
blue points covered by SB is maximized. We consider
also a similar problem of finding two isothetic squares
SB and SR of given sizes with disjoint interiors such
that the number of red points covered by SR plus the
number of blue points covered by SB is maximized.
In what follows, and to avoid repetitions, a bi-colored
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point set is a point set such that all its elements are
colored red or blue.

In [10] the following problem is considered: given
a bi-colored point set Pn on the plane, find an axis-
parallel box that does not contain blue points and
maximizes the number of red points it covers. An
O(n2 log n) time algorithm is presented for solving
this problem.

In [1] a similar problem is studied: given a bi-
colored point set Pn in R

d, find a ball that maximizes
the number of red points it contains without contain-
ing any blue point in its interior. For d = 2, this
problem is solved in O(n2 log n) time. Monochromatic
variants of these problems were studied in [5, 8].

In Pattern Recognition and Classification problems,
a natural method to select prototypes to represent a
class is to performer cluster analysis on the training
data [7]. The clustering can be obtained by using sim-
ple geometric shapes such as circles or boxes. Recent
papers deal with the maximum bi-chromatic cover-
ing problem. The problem is the following: given a
bi-chromatic point set, the goal is to maximize the
number of points of a given color, say red, covered
by a given object while avoiding points of the second
color. In [1] and [13] circles and boxes respectively
are considered for the classification.

In some cases, requiring that the red (resp. blue)
covering ball avoid blue (resp. red) points may is
some cases lead to invalid classifications and make the
results obtained useless. This scenario can arise when
facilities interfere with each other, but their possible
users are scattered randomly on the plane. A possible
solution to this problem is to allow blue points in a
red ball and red points in a blue ball. In this paper we
introduce this criterion with fixed sizes for the circles
or boxes.

A central problem in facility location is to find the
best location for a facility to serve a set of users. Max-
imal covering disk problems are often the main crite-
ria used in facility location where in a natural way
a point is served by a facility if it is within a given
distance from it. In some cases the metric used is the
Euclidean distance, and in others the l∞ (box) met-
ric. Many of these problems also arise in operations
research [11]. The problem for locating a maximum
covering circle of a given size in a monochromatic set
was studied in [6].
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2 Two disjoint disks

Let P2n be a planar bi-colored point set with n blue
and n red points. In this section we study the problem
of placing two disks, one red disk CR and one blue disk
CB in such a way that their interiors are disjoint, and
the number of red points covered by the red disk plus
the number of blue points covered by the blue disk is
maximized. In this section we prove:

Theorem 1 Finding the positions for CR and CB

such that the number of red points covered by CR

plus the number of blue points covered by CB is max-
imized can be done in O(n3 log n) time.

To facilitate our presentation we will assume that
the disks are the same size, i.e., equal radii, say r.
Assume first that CR and CB are placed on the plane
such that CR (resp. CB) covers a subset R1 (resp.
B1) of red (resp. blue) points of P2n.

In what follows, when we say that a disk CR or
CB has some points on its boundary, we shall assume
that those points have the same color as the disk.
With this in mind, we state the following result (see
Figure 1):

Lemma 2 The disks CR and CB can be moved to a
new position in the plane such that either: i) one of
the disks has at least two points on its boundary and
the other one has at least one point on its boundary,
or ii) each disk has only one point on its boundary
and these points are collinear with the centers of the
disks.
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Figure 1: Points in the boundaries of the disks.

Constructing an arrangement of red and blue circles

Let Pn be a bi-colored point set on the plane. For
each red point ri (resp. blue point bj) we consider

the red (resp. blue) circle with center in ri (resp. bj)
and radius r. Let A be the arrangement of the 2n
red and blue circles. As the circles are closed Jor-
dan curves such that any of them intersect in at most
two points, the following results can be applied to the
arrangement A.

Theorem 3 [12, 4, 5] The following statements hold
for A: 1) The combinatorial complexity of a single
face in A is at most λ2(n) = O(n). 2) The combinato-
rial complexity of the zone of a circle in A is O(nα(n)).
3) A can be computed in O(n2) time or using the
sweep-line algorithm of Bentley and Ottmann [3] in
O(n2 log n) time.

Notice that a circle can contribute more than one
arc to a cell of A. Associate in A the pair of numbers
(nrj , nbj) to each cell j such that nrj (resp. nbj) is the
number of red (resp. blue) convex arcs which belong
to the boundary of j. Clearly a circle of radius r with
center at any point x in a cell j covers exactly nrj red
points and nbj blue points (Figure 2). Using a line-
sweep algorithm, we can compute the pair (nrj , nbj)
associated to each cell j in O(n2 log n) time.

(2, 1)

x �

Figure 2: Arrangement A.

Pre-processing a circle-arrangement

For each point pk ∈ P2n, the locus ak of centers of
circles passing through pk with radius r defines a circle
with center at pk and radius r.

By Theorem 3, each ak is split into at most O(n)
arcs, each associated to a cell j of A. We label each
of these sub-arcs with the pair (nrj , nbj) of its as-
sociated cell. We store this information for ak in a
segment tree [2] so that we can obtain for any sub-
arc SC of ak the sub-arc of A contained in ak that
intersects SC and maximizes the number nri or nbj ,
which is the maximum number of red or blue points
covered by a circle of radius r with center in ak, in
O(log n) time. For each circle ak, the segment tree
uses O(n log n) space and can be built in O(n log n)
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time. Doing this at a pre-process stage and storing the
information for all the circles of A takes O(n2 log n)
time and O(n2 log n) space.

The algorithm

We now show how to compute the centers of the two
disks CB and CR such that the sum of the number
of red points and blue points covered respectively by
CB and CR is maximized.

two-disks-equal-radii-algorithm

1. Compute A. For each cell j of A compute the
pair (nrj , nbj) and the segment trees for the cir-
cles ak above.

2. By Lemma 2 we can find CB and CR as follows:

(a) For any red point pi and any blue point pj

compute the circles CR(i) and CB(j) (having
pi and pj respectively on their boundaries)
of radius r with centers on the line joining
pi to pj , and at distance |pi − pj | + 2r. In
O(n) time, compute the number or red and
blue points contained in CR(i) and CB(j) re-
spectively. Keep the pair that maximizes
the number of red points in CRi plus the
number of blue points in CB(j).

(b) For any circle CR(i,j) of radius r and cen-
ter c(i, j) that passes through a pair of red
points pi, pj in P2n, do the following: for
any blue point pk at distance greater than
or equal to r from c(i, j), compute in con-
stant time, the sub-arc a′

k of the circle ak

consisting of all the points of ak at distance
greater than or equal to r from c(i, j). Us-
ing the information stored in the segment
tree of ak in O(log n) time, get the sub-arc
of ak in A that intersects a′

k with the largest
nbi, which corresponds to a disk CB with ra-
dius r and center on a′

k that maximizes the
number of blue points it contains. Compute
the numbers of red and blue points covered
by CR(i,j) and CB respectively, keeping the
best solution, see Figure 3. Do the same for
circles of radius r that pass through two blue
points, and keep the best overall solution.

Clearly the best of the solutions obtained in 2(a)
and 2(b) solves our problem.

Analysis of the algorithm. Step 1 of the algorithm can
be done in O(n2 log n) time, step 2(a) can be done
in O(n3) time. Finally, step 2(b) takes O(n log n)
time per pair of points, i.e., O(n3 log n) total time,
assuming a pre-process of O(n2 log n) time for com-
puting the segment trees. Thus the algorithm runs

CR(i,j)
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Figure 3: Locus ak of centers of circles C2.

in O(n3 log n) time. It is easy to see that with some
slight modifications we can drop the condition that
the two circles have the same size. This concludes the
proof of Theorem 1.

3 Two disjoint axis-parallel squares

In this section we study a similar problem in which in-
stead of finding two circles CR and CB , we now want
two isothetic squares SB and SR of given sizes with
disjoint interiors such that the number of red points
covered by SR plus the number of blue points covered
by SB is maximized. As in the previous section, we
restrict ourselves to squares of the same size, i.e. unit
squares. This condition can be lifted easily, leaving
the results unchanged. It is easy to see that a simi-
lar result is valid for two disjoint quadrilaterals with
pairwise parallel sides with given directions. Assume
that the red points of P2n are labeled r1, . . . , rn such
that for i < j the x-coordinate xi of ri is smaller than
the x-coordinate of rj . Assume a similar labeling for
the blue points b1, . . . , bn of P2n.

3.1 Two disjoint axis-parallel unit squares

Let SR and SB be the elements of an optimal solution.
Observe first that since SR and SB are isothetic, there
is a horizontal or vertical line l that separates them.
Assume that l is vertical, and that SR is to the left
and SB to the right of l. Slide SR to the left until its
right side meets a red point. Observe that since SR

is in an optimal solution, the number of red points
it covers does not change. Thus we can assume that
SR contains a red point on its right side. Similarly
we can assume that SB contains a blue point on its
left edge. Using these observations, we now outline a
process to find an optimal pair SR and SB in O(n2)
time. First order the red and the blue points of P2n

according to its y-coordinate.
For each red point ri ∈ P2n, find the unit square

containing ri on its right side which contains the max-
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imum number of red points in P2n. This can be done
in linear time as follows.

First find the set Ri of red points to the left of ri

within the vertical strip ST of unit width bounded
to its right by l. Find the unit square S contained
in ST such that ri is on its top side, and count the
number of red points it contains. Now slide S from
bottom to top (keeping it within ST ) until it reaches
a position in which ri lies on its bottom edge. While
sliding S, keep track of the number of red points it
contains as they enter or leave S. This can be done
easily in linear time using the order of the red points
of P2n according to its y-coordinate. At the end of
this process, we have identified the square containing
ri on its right side that contains the maximum number
mri of red points.

In a similar way we can process the blue points of
P2n such that for each blue point bj we find a square
containing bj on its left edge, and containing the max-
imum number mbj of blue points.

For each ri let mr(i) = max{mrk
; k ≤ i}. The set

{mr(i) : i = 1, . . . , n} can be found in linear time
with a single scan of the set of red points from left to
right. In a similar way, we can find the set of values
{mb(j) : j = 1, . . . , n} such that mb(j) = max{mbk

:
k ≥ j}.

Using the lists mr(1), . . . , mr(n), mb(1), . . . , mb(n)
and traversing all the points (blue and red) of P2n

from left to right we can find an optimal pair of
squares SR and SB in linear time. For brevity, the
details are left to the reader. Full details appear in a
longer version of this paper. Proceeding in a similar
way when SB is to the left of l and SR to its right, or
when a horizontal line separates SR and SB we obtain
the following theorem.

Theorem 4 Finding two axis-parallel unit-squares
with disjoint interiors such that the sum of the red
points covered by SR plus the number of blue points
covered by SB is maximized can be done in O(n2)
time.

Theorem 5 The two axis-parallel unit-squares with
disjoint interiors such that the sum of the the red
points covered by SR plus the number of blue points
covered by SB is maximized requires Ω(n log n) time
under the algebraic computation tree model.

The lower bound can be proved by a reduction to
the uniform gap problem [9].

To close we would like to mention that using similar
techniques as those in this section, we can obtain the
following result:

Theorem 6 Let Pn be a set of n points in the plane.
The problem of finding three axis-parallel rectangles

(not necessarily of the same size) with disjoint interi-
ors such that the number of points of Pn covered by
them is maximized can be solved in O(n3) time.
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