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Abstract

Let P be a set of n points in general position in the plane. There
is a convex decomposition of P with at most 10”—7_18 elements. More-
over, any minimal convex decomposition of a set P has at most #

elements.

1 Introduction

Let P be a set of points in general position in the plane. A set IT of convex
polygons with vertices in P and with pairwise disjoint interiors is a convex
decomposition of P if their union is the convex hull CH (P) of P and no
point of P lies in the interior of any polygon in II. A convex decomposition
IT of P is minimal if the union of any two polygons in II is not a convex
polygon.

J. Urrutia [2] conjectured that for any set P of n > 3 points in general
position in the plane, there is a convex decomposition of P with at most n+1
elements. Later, O. Aichholzer and H. Kasser [1] give a set P,, with n points,
for each n > 13, such that any convex decomposition of P, has at least n + 2
elements.

In this article we prove that for any set P of n > 3 points in general po-
sition in the plane, there is a convex decomposition of P with at most 10”—7_18
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elements. Moreover, we prove that if Il is a minimal convex decomposition
of P, then II has at most @ elements, where k is the number of points in
the boundary of CH (P).

2 Convex decompositions

Let II be a convex decomposition of a set P of points in general position
in the plane. An edge e of Il is essential in II if either e is contained in
the boundary of CH (P) or aw U 3 is not convex, where o and ( are the
two polygons in II that contain the edge e. If e is not essential in II, then
(IT/{e, 5}) U {arU B} is a convex decomposition of P which we denote by
II—e.

Let u, v and w be points in P. We say that the triangle Auvw is empty
(with respect to P) if there are no vertices of P in the interior of Auvw.

Theorem 1 For each set P of n > 3 points in convex position in the plane,
there is a convex decomposition 11 of P with at most 10”—7_18 elements.

Proof. If n = 3, then the boundary of CH (P) is a convex decomposition
of P with 1 element. We proceed by induction assuming n > 4 and that the
result follows for every proper subset of P with at least 3 points.

If possible, let x and y be two non consecutive points in the boundary
of CH (P) and let L and R be the closed halfplanes defined by the line
joining x and y. Let P, = PN L and P, = PN R. By induction, there is a
convex decomposition II; of P; with at most 10"1—7_18 elements and a convex
decomposition I, of P, with at most 10—"27_—18 elements where n; and ns are
the number of points in P; and P; respectively.

Clearly II; U II, is a convex decomposition of P. Let o and 3 be the
unique polygons in Il; and Ily, respectively, that contain the edge e = zy.
Since a U  is a convex polygon, then e is not essential in IT; U II; and
therefore IT = (II; UIly) — e is a convex decomposition of P with at most
10"17_18 + 10”27_18 — 1 elements. Since ny + no = n + 2, then II has at most
10"—7_23 elements.

We may now assume that the boundary of CH (P) has exactly 3 points
which we denote by a, b and c.

Case 1.- There is an internal point & of P such that none of Aaxb, Aazxc and
Abzc is an empty triangle.




Figure 1: Edge ax is not essential in II; U Il, U I3

Let P, = PN Aaxb, P, = PN Aaxc and P; = PN Abze. By induction,
for + = 1,2, 3, there is a convex decomposition II; of P; with at most w—”ifﬁ
elements, where n; is the number of points in P;. Clearly II; U Il; UIl3 is a
convex decomposition of P.

Since Aaxb is not empty, then there is a point u in the interior of Aaxb
which is adjacent to x in II;. This implies that at least one of the edges ax
or bz is not essential in II; U I, UIl3 (see Figure 1).

Analogously, at least one of the edges cx or bx and at least one of the
edges ax or cx are not essential in II; U Il; U II3. We claim that there are
two edges ey, ex € {ax,bx,cx} such that 1T = (I1; U T, UTl3) — {e1, e} is a
convex decomposition of P.

Since n = ny + ng + n3z — 5, then the number of elements in II is

ju

|1, UTL, U Tl — 2
ITLy | + |TIo| + T3] — 2
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Case 2.- There is an internal point x of P such that two of Aaxb, Aaxc and
Abzc are empty triangles.

Without loss of generality we assume that Aaxb, Aazc contain no points
of P in their interiors.
Subcase 2.1.- Abxc is not an empty triangle.

By induction there is a convex decomposition IT; of P\ {a} with at most
ﬂ"—}l&. Clearly II; U{Aaxb, Aazc} is a convex decomposition of P. Since
Abzc is not empty, then there is a point in the interior of Abxc which is
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adjacent to z in II;. This implies that there is an edge e € {xb, xc} which is
not essential in IT; U{Aaxb, Aazc} and therefore IT = (IT; U {Aaxb, Aazxc})—
e is a convex decomposition of P.

In this case the number of elements of II is

1| = |1 U{Aaxdb, Aazxc}| —1
= |IL| + |[{Aazb, Aazc}| — 1

10n—21
7

I IA

Subcase 2.2.- Abxc is an empty triangle.

In this case n = 4 and II = {Aaxb, Aazc, Abzc} is a convex decomposi-
tion of P with 3 elements.

Case 3.- For each interior point u of P, exactly one of Aaub, Aauc and Abuc
is an empty triangle.

Let z be an interior point of P. Without loss of generality we assume
that Aazb is an empty triangle.

Subcase 3.1.- There is an interior point x of P such that Oaxzb is a convex
quadrilateral that contains no points of P in its interior.

Let P, = PN Aaxc, P, = PN Azcz and P; = Abzc. By induction, for
1 = 1,2,3, there is a convex decomposition II; of P; with at most 10—””;7_&
elements, where n; is the number of points in F;. Clearly II; U II, U II3
U {Oazyb} is a convex decomposition of P.

Since Aaxb is empty, then Aaxc cannot be empty. Therefore there is a
point in the interior of Aaxc which is adjacent to = in II;. This implies that
there is an edge e; € {za, zc} which is not essential in IT; UTT,UIl3 U {Dazzb}.
Analogously there is an edge es € {zc, zb} which is not essential in IT; UTI,UII3
U{Dazxzb}. We claim that II = (II; Ul UIl3 U {Oaxzb}) — {e1,ea} is a
convex decomposition of P.

Since n = ny + ng + n3z — 4, then the number of elements in II is

1]

[Tl UL, Ul U {Oazzb}| — 2

ITI4 | 4 |TI| + [TI3] + |[{Dazzb}| — 2
10n1—18 + 10no—18 + 10ng3—18 + 1 _ 2

7 7 7
10(TL1 +n2+n3)—61

7
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Subcase 3.2.- For each other interior point u of P, z is an interior point of
Aaub.

Since Aazb is an empty triangle, then Aazc must contain at least one
point of P in its interior. Let x be a point of P in the interior of Aazc such
that Azxza is an empty triangle. Analogously, there is a point y of P in the
interior of Abzc such that Ayzb is an empty triangle.

Subsubcase 3.2.1.- Acxb is an empty triangle.

Let P, = PN Aaxc and P, = PN Axzb. By induction, there is a convex
decomposition I1; of P; with at most 10—"7L18 elements and a convex decompo-
sition Il of P, with at most M elements where n; and ns are the number
of points in P; and P, respectively. Clearly IT; U Ily U {Aazb, Aazz, Acxb}
is a convex decomposition of P.

Since Acxb is an empty triangle, then Aaxc cannot be empty, therefore
there is a point in the interior of Aaxc which is adjacent to x in II;. This
implies that there is an edge e; € {xa, zc} which is not essential in IT; UTI; U
{Aazb, Aaxz, Acxb}.

Since Aazb is an empty triangle, then Aczb cannot be empty. Since
Aczb C AcxbU Axzb and Acxb is an empty triangle, then Axzzb is not
empty. Therefore there is a point in the interior of Axzb which is adjacent
to z in II,. This implies that there is an edge e; € {zx,zb} which is not
essential in IIs.

We claim that IT = (II; U IIo U { Aazb, Aayz, Acyb}) —{e1, e2} is a convex
decomposition of P.

Since n = ny + ny — 1, then the number of elements in II is

ut

1T, U Il U {Aazb, Aayz, Acyb}| — 2
[Ty | 4 |[TIs| + [{Aazb, Aayz, Acyb}| — 2
10n17—18 I 10n27—18 139
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Subsubcase 3.2.2.-Acya is an empty triangle.

Interchange y and x and a and b in Case 3.2.1.
Subsubcase 3.2.3.- Both Aczb and Acya contain at least one point of P in
their interiors.

Since z lies in the interior of Aaxb, then both triangles Aczb and Aazb
are not empty and therefore Aaxc is empty. Analogously Abyc is also empty.



Subsubsubcase 3.2.3.1.- The quadrilateral Ocyzx contains at least one point
u of P in its interior.

Without loss of generality we assume that u lies in the interior of Acxz.
Let P, = PNAcxz and P, = PNAczb. By induction there is a convex decom-
position IT; of P, with at most 1%%=18 elements and a convex decomposition
II, of P, with at most 10"277’18 elements, where n; and no are the number of
points in P; and P, respectively. Clearly II; U II, U {Aaxc, Aaxz, Aazb} is
a convex decomposition of P.

Since Aczxz is not empty then there is a point in the interior of Aczz
which is adjacent to x in IT;. This implies that there is an edge e; € {zc, xz}
which is not essential in IT; UTI,U{Aazc, Aaxz, Aazb}. Analogously, there is
an edge ey € {zc, zb} which is no essential in IT; UTlo U {Aazc, Aaxz, Aazb}.
We claim that IT = (II; UIlo U {Aaye, Aayz, Aazb}) — {e1,e2} is a convex
decomposition of P.

Since n = ni;+ny— 1 as in Subsubcase 3.2.1, then the number of elements
in II is at most M.

Subsubsubcase 3.2.3.2.- The quadrilateral Ocyzx contains no points of P in
its interior.

In this case P = {a,b, ¢, z,y, x} and { Aayc, Aayz, Aazb, Abzz, Abzc, Ocyzx}
is a convex decomposition of P with 6 = w elements.

Since cases 1, 2 and 3 cover all possibilities, then the result follows. B

3 Minimal convex decompositions

Let P be a set of n points in general position in the plane and T be a
triangulation of P. An edge e of T is flippable if e is contained in the
boundary of two triangles r and s of T" such that rUs is a convex quadrilateral.
F. Hurtado et al proved in [2] that T" has at least ”7_4 flippable edges.

In this section we modify their proof to show that 7" has a set {eq, ea,..., €}
with at least ”7_4 edges such that the faces of T—{ey, e, . . ., ¢;} form a convex
decomposition of P.

For every convex decomposition II of P let G (II) denote the skeleton
graph of II. That is the plane geometric graph with vertex set P in which
the edges are the sides of all polygons in 1I.

If IT is a minimal convex decomposition of P, then for every internal edge
e of G (II), the graph G (II) — e has an internal face ). which is not convex
and at least one end of e is a reflex vertex of (..



Therefore we can orient the edges of G (II) as follows: The edges lying in
the boundary of CH (P) are oriented clockwise, and every internal edge e is

oriented towards a reflex vertex of (J.. If both ends of e are reflex vertices
—

of ., the orientation of e is arbitrary. Let G (II) denote the corresponding
oriented geometric graph.
The following lemma is presented here without proof.

Lemma 2 IfII is a minimal convex decomposition of P then:

a) The indegree d~ (u) of every vertex u of G (II) is at most 3.
—
b) If uZ, vZ are arcs of G (II), then uz and vz lie in a common face of G (I1).

— — — P . .
c) If uz, vz and wz are arcs of G (II), then z has degree 3 in G (II) and lies
in the interior of the triangle uvw. B

Lemma 3 LetII be a minimal convex decomposition of P. If k is the number

of vertices in the boundary of CH (P), then |V3| < 2|Vo|+2|Vi|+|Va|— (k+2),
—

where V; denotes the set of vertices of G (I1) with indegree i.

Proof. By Lemma 2b, the graph G (II) can be extended to plane geometric
graph Fli) which all internal faces are triangles such that if wZ and vZ are
arcs of G (IT), then F} contains the edge uv. For each vertex z € V3, let T'(2)
denote the triangular face of Flbil)nded by the edges uz, vz and uv, where

uZ and vZ are the two arcs of G (II) with head in w.

Let F; be the plane geometric graph with vertex set VoU Vi U Vs, obtained
from G (II) by deleting all vertices in V5. Notice that each internal face of
F, is a triangle and that 7" (z) is a face of F, for each z € V,. By Euler’s
formula, the number of internal faces of Fy is 2(|Py| + | Pi| + | P2|) — (k + 2).
Since each vertex u € V3 must lie in the interior of a face of F» which is not a
face of Fi, then there are at most as many vertices in V3 as faces in F5 which
are not faces of Fy. That is [V3] < (2(|Vo| + V1| + [Va]) — (K +2)) — |Va| =
2\Vol +2[Vi| + Vo] — (K +2). 1

Theorem 4 If Il is a minimal convexr decomposition of P, then II has at
most @ elements, where k is the number of points in the boundary of

CH (P)]

>

Proof. Let G (II) be the skeleton graph of IT and G (II) be the corresponding
oriented graph. By Lemma 2, d~ (u) < 3 for each u € V (G (H)) and
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therefore

e
E (G (H))
—_—
G (II) with indegree i. It follows that

= |Vi| + 2|Va| + 3| V3|, where V; is the set of vertices of

E—
2‘E(G(H)>‘ = 2[VA| + 4|V + 6]V
= 5([Vol + |V + [Val + [Va]) — 5 Vol — 3|VA| — [Va| + |Val

—

Since n — ‘V (G(H))‘ — [Vo| + [Vi| + [Va| + [V4| and, by Lemma 2,
Va] < 2|Vo| + 2|Vi| + |Vo| — (k +2), then

2\E(G<H>)\ < 5n—5[Vol - 3[Vi| — |Val + (2IVa| + 2[Vi| + |Va| — (k +2))
— 50— 3[Vh| — [Vi| - k2

Since all vertices in the boundary of C'H (P) have indegree 1 in G (II),
then |V;| > k and therefore

—
2‘E<G(H)>‘ S — 3 [Vo| — 2k — 2

<
< bn—2k—-2

——
By Euler’s formula, the number of internal faces of G (II) is

1 - ‘v (G (H))‘ + ‘E (G (H)N C1p el men

2

Since the elements of IT correspond to the internal faces of CTH)) , then
the result follows. B

Let G; be the geometric graph in Figure 2, and for ¢ > 1 let G;;11 be
geometric graph obtained from G; as in Figure 3, where G; is a copy of G;
with the 3 convex hull edges removed and placed upside down.

For ¢+ > 1, G; is the skeleton graph of a minimal convex decomposition
II; of a set P; with n; = 6¢ — 2 points and. Since II; has r; =91 — 6 = 3”1'2—_6
elements, then this shows that the bound in Theorem 2 is tight for k = 3.
An analogous family of convex decompositions can be constructed for any
k> 3.



Figure 2:

Figure 3:

Corollary 5 IfT is a triangulation of a set P of n points in convex position

in the plane, then T contains a set {eq,es, ..., e} with at least ”7_4 flippable
edges such that the faces of T — {e1, eq, ..., e} form a convex decomposition
of P.

Proof. Let Il be a minimal convex decomposition of P such that all edges of
G (IT) are edges of T'. By the proof of Theorem 4 the graph, G (II) has at most
Bn=2k=2 edges, where k is the number of points in the boundary of CH (P).
Smce T has 3n—k—3 edges, then there are at least 3n—k—3— 5”—2’“2 = 5= -
edges in T' which are not edges of G (II). Clearly each of these edges is
flippable in T

4 Final remark

It remains as a problem to decide whether there exists a constant ¢ such that
for any set P of n points in general position in the plane, there is a convex
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decomposition of P with at most n + ¢ elements.
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