A note on convex decompositions of a set of points in the plane

Víctor Neumann-Lara* Eduardo Rivera-Campo[†] Jorge Urrutia[‡]

Abstract

Let P be a set of n points in general position in the plane. There is a convex decomposition of P with at most $\frac{10n-18}{7}$ elements. Moreover, any minimal convex decomposition of a set P has at most $\frac{3n-6}{2}$ elements.

1 Introduction

Let P be a set of points in general position in the plane. A set Π of convex polygons with vertices in P and with pairwise disjoint interiors is a *convex decomposition* of P if their union is the convex hull CH(P) of P and no point of P lies in the interior of any polygon in Π . A convex decomposition Π of P is *minimal* if the union of any two polygons in Π is not a convex polygon.

J. Urrutia [2] conjectured that for any set P of $n \geq 3$ points in general position in the plane, there is a convex decomposition of P with at most n+1 elements. Later, O. Aichholzer and H. Kasser [1] give a set P_n with n points, for each $n \geq 13$, such that any convex decomposition of P_n has at least n+2 elements.

In this article we prove that for any set P of $n \ge 3$ points in general position in the plane, there is a convex decomposition of P with at most $\frac{10n-18}{7}$

^{*}Instituto de Matemáticas, Universidad Nacional Autónoma de México.

[†]Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa.

[‡]Instituto de Matemáticas, Universidad Nacional Autónoma de México.

elements. Moreover, we prove that if Π is a minimal convex decomposition of P, then Π has at most $\frac{3n-2k}{2}$ elements, where k is the number of points in the boundary of CH(P).

2 Convex decompositions

Let Π be a convex decomposition of a set P of points in general position in the plane. An edge e of Π is essential in Π if either e is contained in the boundary of CH(P) or $\alpha \cup \beta$ is not convex, where α and β are the two polygons in Π that contain the edge e. If e is not essential in Π , then $(\Pi/\{\alpha,\beta\}) \cup \{\alpha \cup \beta\}$ is a convex decomposition of P which we denote by $\Pi - e$.

Let u, v and w be points in P. We say that the triangle Δuvw is empty (with respect to P) if there are no vertices of P in the interior of Δuvw .

Theorem 1 For each set P of $n \ge 3$ points in convex position in the plane, there is a convex decomposition Π of P with at most $\frac{10n-18}{7}$ elements.

Proof. If n = 3, then the boundary of CH(P) is a convex decomposition of P with 1 element. We proceed by induction assuming $n \ge 4$ and that the result follows for every proper subset of P with at least 3 points.

If possible, let x and y be two non consecutive points in the boundary of CH(P) and let L and R be the closed halfplanes defined by the line joining x and y. Let $P_1 = P \cap L$ and $P_2 = P \cap R$. By induction, there is a convex decomposition Π_1 of P_1 with at most $\frac{10n_1-18}{7}$ elements and a convex decomposition Π_2 of P_2 with at most $\frac{10n_2-18}{7}$ elements where n_1 and n_2 are the number of points in P_1 and P_2 respectively.

Clearly $\Pi_1 \cup \Pi_2$ is a convex decomposition of P. Let α and β be the unique polygons in Π_1 and Π_2 , respectively, that contain the edge e = xy. Since $\alpha \cup \beta$ is a convex polygon, then e is not essential in $\Pi_1 \cup \Pi_2$ and therefore $\Pi = (\Pi_1 \cup \Pi_2) - e$ is a convex decomposition of P with at most $\frac{10n_1-18}{7} + \frac{10n_2-18}{7} - 1$ elements. Since $n_1 + n_2 = n + 2$, then Π has at most $\frac{10n_1-23}{7}$ elements.

We may now assume that the boundary of CH(P) has exactly 3 points which we denote by a, b and c.

Case 1.- There is an internal point x of P such that none of Δaxb , Δaxc and Δbxc is an empty triangle.

Figure 1: Edge ax is not essential in $\Pi_1 \cup \Pi_2 \cup \Pi_3$

Let $P_1 = P \cap \Delta axb$, $P_2 = P \cap \Delta axc$ and $P_3 = P \cap \Delta bxc$. By induction, for i = 1, 2, 3, there is a convex decomposition Π_i of P_i with at most $\frac{10n_i - 18}{7}$ elements, where n_i is the number of points in P_i . Clearly $\Pi_1 \cup \Pi_2 \cup \Pi_3$ is a convex decomposition of P.

Since Δaxb is not empty, then there is a point u in the interior of Δaxb which is adjacent to x in Π_1 . This implies that at least one of the edges ax or bx is not essential in $\Pi_1 \cup \Pi_2 \cup \Pi_3$ (see Figure 1).

Analogously, at least one of the edges cx or bx and at least one of the edges ax or cx are not essential in $\Pi_1 \cup \Pi_2 \cup \Pi_3$. We claim that there are two edges $e_1, e_2 \in \{ax, bx, cx\}$ such that $\Pi = (\Pi_1 \cup \Pi_2 \cup \Pi_3) - \{e_1, e_2\}$ is a convex decomposition of P.

Since $n = n_1 + n_2 + n_3 - 5$, then the number of elements in Π is

$$|\Pi| = |\Pi_1 \cup \Pi_2 \cup \Pi_3| - 2$$

$$= |\Pi_1| + |\Pi_2| + |\Pi_3| - 2$$

$$\leq \frac{10n_1 - 18}{7} + \frac{10n_2 - 18}{7} + \frac{10n_3 - 18}{7} - 2$$

$$= \frac{10(n_1 + n_2 + n_3) - 68}{7}$$

$$= \frac{10(n + 5) - 68}{7}$$

$$= \frac{10n - 78}{7}$$

Case 2.- There is an internal point x of P such that two of Δaxb , Δaxc and Δbxc are empty triangles.

Without loss of generality we assume that Δaxb , Δaxc contain no points of P in their interiors.

Subcase 2.1.- Δbxc is not an empty triangle.

By induction there is a convex decomposition Π_1 of $P \setminus \{a\}$ with at most $\frac{10(n-1)-18}{7}$. Clearly $\Pi_1 \cup \{\Delta axb, \Delta axc\}$ is a convex decomposition of P. Since Δbxc is not empty, then there is a point in the interior of Δbxc which is

adjacent to x in Π_1 . This implies that there is an edge $e \in \{xb, xc\}$ which is not essential in $\Pi_1 \cup \{\Delta axb, \Delta axc\}$ and therefore $\Pi = (\Pi_1 \cup \{\Delta axb, \Delta axc\}) - e$ is a convex decomposition of P.

In this case the number of elements of Π is

$$\begin{array}{lll} |\Pi| & = & |\Pi_1 \cup \{\Delta axb, \Delta axc\}| - 1 \\ & = & |\Pi_1| + |\{\Delta axb, \Delta axc\}| - 1 \\ & \leq & \frac{10(n-1)-18}{7} + 2 - 1 \\ & = & \frac{10n-21}{7} \end{array}$$

Subcase 2.2.- Δbxc is an empty triangle.

In this case n=4 and $\Pi=\{\Delta axb, \Delta axc, \Delta bxc\}$ is a convex decomposition of P with 3 elements.

Case 3.- For each interior point u of P, exactly one of Δaub , Δauc and Δbuc is an empty triangle.

Let z be an interior point of P. Without loss of generality we assume that Δazb is an empty triangle.

Subcase 3.1.- There is an interior point x of P such that $\Box axzb$ is a convex quadrilateral that contains no points of P in its interior.

Let $P_1 = P \cap \Delta axc$, $P_2 = P \cap \Delta xcz$ and $P_3 = \Delta bzc$. By induction, for i = 1, 2, 3, there is a convex decomposition Π_i of P_i with at most $\frac{10n_i - 18}{7}$ elements, where n_i is the number of points in P_i . Clearly $\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \{\Box axyb\}$ is a convex decomposition of P.

Since Δaxb is empty, then Δaxc cannot be empty. Therefore there is a point in the interior of Δaxc which is adjacent to x in Π_1 . This implies that there is an edge $e_1 \in \{xa, xc\}$ which is not essential in $\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \{\Box axzb\}$. Analogously there is an edge $e_2 \in \{zc, zb\}$ which is not essential in $\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \{\Box axzb\}$. We claim that $\Pi = (\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \{\Box axzb\}) - \{e_1, e_2\}$ is a convex decomposition of P.

Since $n = n_1 + n_2 + n_3 - 4$, then the number of elements in Π is

$$\begin{aligned} |\Pi| &= |\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \{\Box axzb\}| - 2 \\ &= |\Pi_1| + |\Pi_2| + |\Pi_3| + |\{\Box axzb\}| - 2 \\ &\leq \frac{10n_1 - 18}{7} + \frac{10n_2 - 18}{7} + \frac{10n_3 - 18}{7} + 1 - 2 \\ &= \frac{10(n_1 + n_2 + n_3) - 61}{7} \\ &= \frac{10(n + 4) - 61}{7} \\ &= \frac{10n - 7}{7} \end{aligned}$$

Subcase 3.2.- For each other interior point u of P, z is an interior point of Δaub .

Since Δazb is an empty triangle, then Δazc must contain at least one point of P in its interior. Let x be a point of P in the interior of Δazc such that Δxza is an empty triangle. Analogously, there is a point y of P in the interior of Δbzc such that Δyzb is an empty triangle.

Subsubcase 3.2.1.- Δcxb is an empty triangle.

Let $P_1 = P \cap \Delta axc$ and $P_2 = P \cap \Delta xzb$. By induction, there is a convex decomposition Π_1 of P_1 with at most $\frac{10n_1-18}{7}$ elements and a convex decomposition Π_2 of P_2 with at most $\frac{10n_2-18}{7}$ elements where n_1 and n_2 are the number of points in P_1 and P_2 , respectively. Clearly $\Pi_1 \cup \Pi_2 \cup \{\Delta azb, \Delta axz, \Delta cxb\}$ is a convex decomposition of P.

Since Δcxb is an empty triangle, then Δaxc cannot be empty, therefore there is a point in the interior of Δaxc which is adjacent to x in Π_1 . This implies that there is an edge $e_1 \in \{xa, xc\}$ which is not essential in $\Pi_1 \cup \Pi_2 \cup \{\Delta azb, \Delta axz, \Delta cxb\}$.

Since Δazb is an empty triangle, then Δczb cannot be empty. Since $\Delta czb \subset \Delta cxb \cup \Delta xzb$ and Δcxb is an empty triangle, then Δxzb is not empty. Therefore there is a point in the interior of Δxzb which is adjacent to z in Π_2 . This implies that there is an edge $e_2 \in \{zx, zb\}$ which is not essential in Π_2 .

We claim that $\Pi = (\Pi_1 \cup \Pi_2 \cup \{\Delta azb, \Delta ayz, \Delta cyb\}) - \{e_1, e_2\}$ is a convex decomposition of P.

Since $n = n_1 + n_2 - 1$, then the number of elements in Π is

$$\begin{array}{lll} |\Pi| & = & |\Pi_1 \cup \Pi_2 \cup \{\Delta azb, \Delta ayz, \Delta cyb\}| - 2 \\ & = & |\Pi_1| + |\Pi_2| + |\{\Delta azb, \Delta ayz, \Delta cyb\}| - 2 \\ & \leq & \frac{10n_1 - 18}{7} + \frac{10n_2 - 18}{7} + 3 - 2 \\ & = & \frac{10(n_1 + n_2) - 29}{7} \\ & = & \frac{10(n + 1) - 29}{7} \\ & = & \frac{10n - 19}{7} \end{array}$$

Subsubcase 3.2.2.- Δcya is an empty triangle.

Interchange y and x and a and b in Case 3.2.1.

Subsubcase 3.2.3.- Both Δcxb and Δcya contain at least one point of P in their interiors.

Since z lies in the interior of Δaxb , then both triangles Δcxb and Δaxb are not empty and therefore Δaxc is empty. Analogously Δbyc is also empty.

Subsubsubcase 3.2.3.1.- The quadrilateral $\Box cyzx$ contains at least one point u of P in its interior.

Without loss of generality we assume that u lies in the interior of Δcxz . Let $P_1 = P \cap \Delta cxz$ and $P_2 = P \cap \Delta czb$. By induction there is a convex decomposition Π_1 of P_1 with at most $\frac{10n_1-18}{7}$ elements and a convex decomposition Π_2 of P_2 with at most $\frac{10n_2-18}{7}$ elements, where n_1 and n_2 are the number of points in P_1 and P_2 , respectively. Clearly $\Pi_1 \cup \Pi_2 \cup \{\Delta axc, \Delta axz, \Delta azb\}$ is a convex decomposition of P.

Since Δcxz is not empty then there is a point in the interior of Δcxz which is adjacent to x in Π_1 . This implies that there is an edge $e_1 \in \{xc, xz\}$ which is not essential in $\Pi_1 \cup \Pi_2 \cup \{\Delta axc, \Delta axz, \Delta azb\}$. Analogously, there is an edge $e_2 \in \{zc, zb\}$ which is no essential in $\Pi_1 \cup \Pi_2 \cup \{\Delta axc, \Delta axz, \Delta azb\}$. We claim that $\Pi = (\Pi_1 \cup \Pi_2 \cup \{\Delta ayc, \Delta ayz, \Delta azb\}) - \{e_1, e_2\}$ is a convex decomposition of P.

Since $n = n_1 + n_2 - 1$ as in Subsubcase 3.2.1, then the number of elements in Π is at most $\frac{10n-19}{7}$.

Subsubsubc as a.2.3.2. The quadrilateral $\Box cyzx$ contains no points of P in its interior.

In this case $P = \{a, b, c, z, y, x\}$ and $\{\Delta ayc, \Delta ayz, \Delta azb, \Delta bzx, \Delta bxc, \Box cyzx\}$ is a convex decomposition of P with $6 = \frac{10(6)-18}{7}$ elements.

Since cases 1, 2 and 3 cover all possibilities, then the result follows. \blacksquare

3 Minimal convex decompositions

Let P be a set of n points in general position in the plane and T be a triangulation of P. An edge e of T is flippable if e is contained in the boundary of two triangles r and s of T such that $r \cup s$ is a convex quadrilateral. F. Hurtado et al proved in [2] that T has at least $\frac{n-4}{2}$ flippable edges.

In this section we modify their proof to show that T has a set $\{e_1, e_2, \ldots, e_t\}$ with at least $\frac{n-4}{2}$ edges such that the faces of $T - \{e_1, e_2, \ldots, e_t\}$ form a convex decomposition of P.

For every convex decomposition Π of P let $G(\Pi)$ denote the *skeleton graph* of Π . That is the plane geometric graph with vertex set P in which the edges are the sides of all polygons in Π .

If Π is a minimal convex decomposition of P, then for every internal edge e of $G(\Pi)$, the graph $G(\Pi) - e$ has an internal face Q_e which is not convex and at least one end of e is a reflex vertex of Q_e .

Therefore we can orient the edges of $G(\Pi)$ as follows: The edges lying in the boundary of CH(P) are oriented clockwise, and every internal edge e is oriented towards a reflex vertex of Q_e . If both ends of e are reflex vertices of Q_e , the orientation of e is arbitrary. Let $\overrightarrow{G(\Pi)}$ denote the corresponding oriented geometric graph.

The following lemma is presented here without proof.

Lemma 2 If Π is a minimal convex decomposition of P then:

- a) The indegree $d^{-}(u)$ of every vertex u of $\overrightarrow{G(\Pi)}$ is at most 3.
- b) If \overrightarrow{uz} , \overrightarrow{vz} are arcs of $\overrightarrow{G(\Pi)}$, then uz and vz lie in a common face of $G(\Pi)$.
- c) If \overrightarrow{uz} , \overrightarrow{vz} and \overrightarrow{wz} are arcs of $\overrightarrow{G(\Pi)}$, then z has degree 3 in $G(\Pi)$ and lies in the interior of the triangle uvw.

Lemma 3 Let Π be a minimal convex decomposition of P. If k is the number of vertices in the boundary of CH(P), then $|V_3| \leq 2|V_0| + 2|V_1| + |V_2| - (k+2)$, where V_i denotes the set of vertices of $\overline{G(\Pi)}$ with indegree i.

Proof. By Lemma 2b, the graph $G(\Pi)$ can be extended to plane geometric graph F_1 in which all internal faces are triangles such that if \overrightarrow{uz} and \overrightarrow{vz} are arcs of $\overrightarrow{G(\Pi)}$, then F_1 contains the edge uv. For each vertex $z \in V_2$, let T(z) denote the triangular face of F_1 bounded by the edges uz, vz and uv, where \overrightarrow{uz} and \overrightarrow{vz} are the two arcs of $\overrightarrow{G(\Pi)}$ with head in w.

Let F_2 be the plane geometric graph with vertex set $V_0 \cup V_1 \cup V_2$, obtained from $G(\Pi)$ by deleting all vertices in V_3 . Notice that each internal face of F_2 is a triangle and that T(z) is a face of F_2 for each $z \in V_2$. By Euler's formula, the number of internal faces of F_2 is $2(|P_0| + |P_1| + |P_2|) - (k+2)$. Since each vertex $u \in V_3$ must lie in the interior of a face of F_2 which is not a face of F_1 , then there are at most as many vertices in V_3 as faces in F_2 which are not faces of F_1 . That is $|V_3| \leq (2(|V_0| + |V_1| + |V_2|) - (k+2)) - |V_2| = 2|V_0| + 2|V_1| + |V_2| - (k+2)$.

Theorem 4 If Π is a minimal convex decomposition of P, then Π has at most $\frac{3n-2k}{2}$ elements, where k is the number of points in the boundary of CH(P).

Proof. Let $G(\Pi)$ be the skeleton graph of Π and $\overrightarrow{G(\Pi)}$ be the corresponding oriented graph. By Lemma 2, $d^{-}(u) \leq 3$ for each $u \in V(\overrightarrow{G(\Pi)})$ and

therefore $\left| E\left(\overrightarrow{G\left(\Pi\right)}\right) \right| = |V_1| + 2|V_2| + 3|V_3|$, where V_i is the set of vertices of $\overrightarrow{G\left(\Pi\right)}$ with indegree i. It follows that

$$2\left|E\left(\overrightarrow{G}(\Pi)\right)\right| = 2|V_1| + 4|V_2| + 6|V_3|$$

$$= 5(|V_0| + |V_1| + |V_2| + |V_3|) - 5|V_0| - 3|V_1| - |V_2| + |V_3|$$

Since $n = \left| V\left(\overrightarrow{G(\Pi)}\right) \right| = |V_0| + |V_1| + |V_2| + |V_3|$ and, by Lemma 2, $|V_3| \le 2|V_0| + 2|V_1| + |V_2| - (k+2)$, then

$$2\left|E\left(\overrightarrow{G(\Pi)}\right)\right| \leq 5n - 5|V_0| - 3|V_1| - |V_2| + (2|V_0| + 2|V_1| + |V_2| - (k+2))$$

$$= 5n - 3|V_0| - |V_1| - k - 2$$

Since all vertices in the boundary of CH(P) have indegree 1 in $\overrightarrow{G(\Pi)}$, then $|V_1| \geq k$ and therefore

$$2\left|E\left(\overrightarrow{G(\Pi)}\right)\right| \leq 5n - 3\left|V_0\right| - 2k - 2$$

$$\leq 5n - 2k - 2$$

By Euler's formula, the number of internal faces of $\overrightarrow{G(\Pi)}$ is

$$1 - \left| V\left(\overrightarrow{G(\Pi)}\right) \right| + \left| E\left(\overrightarrow{G(\Pi)}\right) \right| \le 1 - n + \frac{5n - 2k - 2}{2} = \frac{3n - 2k}{2}$$

Since the elements of Π correspond to the internal faces of $\overrightarrow{G}(\Pi)$, then the result follows.

Let G_1 be the geometric graph in Figure 2, and for $i \geq 1$ let G_{i+1} be geometric graph obtained from G_i as in Figure 3, where $\overline{G_i}$ is a copy of G_i with the 3 convex hull edges removed and placed upside down.

For $i \geq 1$, G_i is the skeleton graph of a minimal convex decomposition Π_i of a set P_i with $n_i = 6i - 2$ points and. Since Π_i has $r_i = 9i - 6 = \frac{3n_i - 6}{2}$ elements, then this shows that the bound in Theorem 2 is tight for k = 3. An analogous family of convex decompositions can be constructed for any $k \geq 3$.

Figure 2:

Figure 3:

Corollary 5 If T is a triangulation of a set P of n points in convex position in the plane, then T contains a set $\{e_1, e_2, \ldots, e_t\}$ with at least $\frac{n-4}{2}$ flippable edges such that the faces of $T - \{e_1, e_2, \ldots, e_t\}$ form a convex decomposition of P.

Proof. Let Π be a minimal convex decomposition of P such that all edges of $G(\Pi)$ are edges of T. By the proof of Theorem 4 the graph, $G(\Pi)$ has at most $\frac{5n-2k-2}{2}$ edges, where k is the number of points in the boundary of CH(P). Since T has 3n-k-3 edges, then there are at least $3n-k-3-\frac{5n-2k-2}{2}=\frac{n-4}{2}$ edges in T which are not edges of $G(\Pi)$. Clearly each of these edges is flippable in T.

4 Final remark

It remains as a problem to decide whether there exists a constant c such that for any set P of n points in general position in the plane, there is a convex

decomposition of P with at most n+c elements.

References

- [1] O. Aichholzer, H. Krasser, The point set order type data base: A collection of applications and results, *Proc.* 13th Canadian Conference on Computational Geometry, University of Waterloo, Waterloo, 2001, 17-20.
- [2] F. Hurtado, M. Noy, J. Urrutia, Flipping edges in triangulations, *Discrete* and Computational Geometry 22 (1999), 333-346.
- [3] J. Urrutia, Open problem session, 10th Canadian Conference on Computational Geometry, McGill University, Montreal, 1998.