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Abstract

Let C = {c1, . . . , cn} be a collection of disjoint closed bounded convex
sets in the plane. Suppose that one of them, say c1, represents a valuable
object we want to uncover, and we are allowed to pick a direction α ∈
[0, 2π) along which we can translate (remove) the elements of C, one
at a time, while avoiding collisions. We study the problem of finding a
direction α0 such that the number of elements that have to be removed
along α0 before we can remove c1 is minimized. We prove that if we have
the sorted set D of directions defined by the tangents between pairs of
elements of C, we can find α0 in O(n2) time. We also discuss the problem
of sorting D in o(n2 logn) time.

1 Introduction
Consider a set C = {c1, . . . , cn} of pairwise disjoint closed bounded convex
sets. It is well known that the elements of C can be removed one at a time
by translating them upwards while avoiding collisions with other elements of
C; see [11, 16]. For example, the elements of the set C = {c1, . . . , c9} shown
in Figure 1(a) can be removed in the order c2, c3, c1, c9, c6, c4, c5, c7, c8. Clearly
this result is also valid if we remove the elements of C by translating them along
any direction α ∈ [0, 2π).

Suppose that c1 ∈ C is a special object that we want to uncover, and that
we are allowed to choose a direction α ∈ [0, 2π) along which we can remove
the elements of C one at a time while avoiding collisions. We want to find the
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(a) The elements of C can be removed
in the upwards direction in the order
c2, c3, c1, c9, c6, c4, c5, c7, c8.

(b) Two different directions in which we
can remove elements from C.

Figure 1: Disassembly in different directions.

direction α0 that minimizes the number of elements we need to remove before
we reach c1. For example, in Figure 1(b), it is easy to see that if we remove the
elements of C in the direction α1, four elements of C have to be removed before
c1 is uncovered, while for α2 we only need to remove two.

This problem can be seen as a variant of the problem known in computa-
tional geometry as the separability problem [5, 4, 9, 17]. Similar problems are
studied in [1, 7], and it is also related to spherical orders determined by light
obstructions [10].

In this paper, we present an O(n2) time algorithm to solve this problem,
assuming that we have the sorted set D of directions defined by the tangents
between pairs of elements of C. To ease our presentation, in the remainder of
the paper we will assume that the interior of the convex sets is not empty. It is
not hard to see that the result holds for families of closed sets.

In Section 2 we give basic definitions and state the problem in these terms.
In Section 3 we explain how we can reduce the search space of our problem to
the set D of critical directions. In Section 4 we present the data structure that
we use to solve our problem. In Section 5, we present an algorithm to solve
the main problem and we prove its time complexity. In Section 6, we discuss
the difficulty of sorting D in less than O(n2 log n) time. Lastly, in Section 7 we
present our conclusions.

2 Partial orders and blocking
Let X be a finite set, and < a relation on the elements of X that satisfies the
following conditions:

1. If x < y and y < z then x < z (transitivity), and

2. x ≮ x (anti-reflexivity).
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The set X together with < is called a partial order, and is usually denoted
as P (<,X).

Given x, y ∈ X, we say that y covers x if x < y and there is no element
w ∈ X such that x < w < y. The diagram of P (<,X) is the directed graph
whose vertices are the elements of X, and which has an oriented edge from x to
y if y covers x.

We say that the diagram of P (<,X) is planar if it can be drawn on the plane
in such a way that the following conditions are satisfied:

a) the elements of X are represented by points on the plane,

b) if y is a cover of x, the edge joining them is a monotonically increasing
curve (with respect to the y-axis) starting at x and ending in y,

c) no edges of P (<,X) intersect except perhaps at a common endpoint.

Given two elements x, y ∈ X, a supremum of x, y is an element w ∈ X such
that x < w, y < w, and for any other element z ∈ X such that x < z and
y < z we have that w < z. An infimum is defined in a similar way, except
that we require w to be w < x and w < y. An ordered set is called a lattice
if any two elements have a unique supremum and infimum. A lattice is called
a planar lattice if its diagram is planar. Finally, a partial order P (<,X) is
called a truncated planar lattice if the order that results when both a least and
a greatest element are added to P (<,X) is a planar lattice.

Let C = {c1, . . . , cn} be a set of disjoint closed bounded convex sets on the
plane and α ∈ [0, 2π). Given two convex sets ci and cj in C, we say that cj is
an upper cover of ci in the direction α (for short, an α-cover) if the following
conditions are satisfied:

1. There is at least one directed line segment with direction α starting at a
point in ci and ending at a point in cj .

2. Any directed line segment with direction α starting at a point in ci and
ending at a point in cj does not intersect any other element of C.

Clearly, if cj is an α-cover of ci, then to uncover ci along the α direction
we need first to remove cj . Observe that if cj is an α-cover of ci, then ci is
an (α + π)-cover of cj . We say that cj blocks ci in the direction α, written as
ci ≺α cj , if there is a sequence ci = cσ(1), cσ(2), . . . , cσ(k) = cj of elements of C
such that cσ(r+1) is an α-cover of cσ(r), with r = 1, . . . , k − 1 (Figure 2). The
following observation will be useful:

Observation 2.1. If ci ≺α cj, then cj ≺α+π ci.

Clearly if ci ≺α cj and cj ≺α ck, then ci ≺α ck. Since ci 6≺α ci, C together
with the blocking relation ≺α is a partial order P (≺α, C). It is known that
P (≺α, C) is a truncated planar lattice [16].

Observe that the diagram of P (≺α, C) has the elements of C as vertices,
and there is an oriented edge from ci to cj if cj is an α-cover of ci (Figure 3).
Since ≺α is defined using α-coverings, the elements of C that we need to remove
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Figure 2: cσ(r+1) is an α-cover of cσ(r), r = 1, 2, 3, and cσ(r) ≺α cσ(s), r < s. In
particular, ci ≺α cj .

in the α direction before an element ci of C is reached are those convex sets
cj such that ci ≺α cj . The set containing these elements will be called the
upper set of ci in the α direction, or for short, the α-up-set of ci. Thus our
problem reduces to that of finding the direction α0 such that the cardinality of
the α0-up-set of c1 is minimized.

Figure 3: Diagram of P (≺α, C) for α = π/2.

Observe that as α changes, so does P (≺α, C). In fact, it is easy to find
families of convex sets for which P (≺α, C) changes Θ(n2) times.

In the next section we prove some properties of P (≺α, C) which will simplify
the search space for α0.

3 The critical directions
A line ` is called a supporting line of a closed convex set c if it intersects c, and
c is contained in one of the closed half-planes determined by `. In what follows,
we will assume that no line is a supporting line of three or more elements of C,
and that there are no two different parallel lines that each support two elements
of C.
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Given two closed convex sets ci and cj , a line ` is called an internal tangent
of ci and cj if ` is a supporting line to both convex sets, and ci is contained
in one of the closed half-planes determined by ` while cj is contained in the
other. Similarly, a line ` is called an external tangent of ci and cj if ` supports
them and ci and cj are contained in the same closed half-plane determined by
` (Figure 4).

Given ci, cj ∈ C, if we orient their common supporting lines from ci to cj , we
can classify them as left internal, right internal, left external, and right external
as in Figure 4. By definition, it is not hard to see that the internal tangents de-
fine critical directions where two convex sets can change their blocking relation.

(a) Internal tangents of ci and cj . (b) External tangents of ci and cj .

Figure 4: Internal and external tangents of ci and cj .

Note that if α is the direction defined by a tangent of ci and cj , from ci to
cj , then α + π is the direction of the same tangent of ci and cj , but directed
from cj to ci.

Observation 3.1. There are at most 4
(
n
2

)
distinct values of α where P (≺α, C)

may change; these changes occur in the slopes defined by the internal tangents
between pairs of elements of C (in both directions).

Given α ∈ [0, 2π), and β = α + θ, θ ∈ [0, 2π), the interval I = [α, β] will
denote the set of directions γ such that γ = α + δ, 0 ≤ δ ≤ θ, addition taken
mod 2π. Note that we consider that said directions grow counter-clockwise.

Although the changes in P (≺α, C) may only happen at directions defined
by internal tangents, we also consider directions defined by external tangents as
they will be used in Section 4.

Let D = {γ1, . . . , γ8(n
2)
} be the set of directions determined by the internal

and external tangents of pairs of elements of C, and suppose that they are
labeled in such a way that for r < s, γr < γs. Observe that if we change
the value of α continuously from 0 to 2π, P (≺α, C) may change only when α
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crosses an element of D. Thus for any α and β in the open interval (γk, γk+1),
P (≺α, C) = P (≺β , C), γk, γk+1 ∈ D. Thus for any α ∈ (γk, γk+1), P (≺α, C)
will be denoted by P (≺γk , C).

Lemma 3.2. If ci ≺α cj, then there is a direction β ∈ (α, α + π) such that ci
and cj are not comparable in P (≺β , C).

Proof. By Observation 2.1, cj ≺α+π ci. Suppose that the lemma is false; then
there is a critical direction γi ∈ D, with α < γi < α + π, such that ci ≺γi cj
and cj ≺γi+1

ci. Observe that at each critical direction in D in which the
partial order changes, either two elements from C stop being comparable or they
become comparable. Thus if ci ≺γi cj , then in γi+1 we have that ci ≺γi+1

cj , or
ci and cj are incomparable. In either case it cannot happen that cj ≺γi+1 ci.

We now prove:

Lemma 3.3. Let ci and cj be two convex sets in C. The set of directions in
which cj blocks ci forms a unique non-empty interval Ii,j.

Proof. If ci ≺α cj for some α, by definition there is a sequence S = cσ(1), cσ(2),
. . . , cσ(k) of elements of C such that cσ(r+1) is an α-cover of cσ(r), with ci = cσ(1),
cj = cσ(k) and r = 1, . . . , k− 1. Denote by Iσ(r),σ(r+1) the interval of directions
determined by the right and left interior tangents of cσ(r) and cσ(r+1), with
r = 1, . . . , k−1. Observe that cσ(r+1) is a γ-cover of cσ(r) for all γ ∈ Iσ(r),σ(r+1).
The sequence S determines then a set of directions I(S) along which ci is
blocked by cj , where I(S) =

⋂k−1
r=1 Iσ(r),σ(r+1). Since at least α ∈ I(S) and the

intersection of intervals is an interval, I(S) is a non-empty interval.
When cj blocks ci in the direction α, there could be more than one sequence

determining such blocking. Any two such blocking sequences, S and S′, differ
at least in an element and, in general, I(Si,j) 6= I(S′i,j).

If we now consider all the directions δ ∈ [0, 2π) where ci ≺δ cj , then there is
a finite number, m ≥ 1, of distinct blocking sequences S1, . . . , Sm given by those
directions; and each Sk determines a non-empty interval I(Sk) of directions. Let
S = {S1, S2, . . . , Sm}. The set Ii,j of directions in which cj blocks ci, determined
by all the sequences in S, is then the non-empty set Ii,j =

⋃m
k=1 I(Sk). If Ii,j

is in fact an interval, then our result holds.
By Lemma 3.2, there is a direction β where ci 6≺β cj . Without loss of

generality, suppose that β = 0; thus 0 6∈ I(Sk) for each Sk ∈ S. Let I(Sk) =
[lk, rk] for each Sk ∈ S, and let I = [θ1, θ2] where θ1 = min{l1, . . . , lm} and
θ2 = max{r1, . . . , rm}. We will show that Ii,j = I.

Clearly Ii,j ⊆ I, hence it remains to be proved that I ⊆ Ii,j . Let γ ∈
[θ1, θ2] = I, we will prove that ci ≺γ cj , and therefore I ⊆ Ii,j . Let Bi be the
band enclosed between the two supporting lines of ci in the γ direction. We
have three cases:

1. The convex set cj intersects Bi. Thus, clearly ci ≺γ cj .
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Figure 5: cj to the left of Bi.

2. The convex set cj is to the left of Bi (Figure 5).

Since ci ≺θ1 cj , we know that there is a sequence ci = cσ(1), cσ(2), . . . ,
cσ(k1) = cj such that cσ(r+1) is a θ1-cover of cσ(r) for r = 1, . . . , k1 − 1.

Since cσ(2) is a θ1-cover of ci = cσ(1), there is a line segment parallel to the
direction θ1 with endpoints in ci = cσ(1) and cσ(2) such that it does not
intersect any other convex set of C. Similarly, for cσ(r) and cσ(r+1) there
is a line segment parallel to the direction θ1 with endpoints in cσ(r) and
cσ(r+1), 2 ≤ r ≤ k1 − 1 such that it does not intersect any other convex
set in C. Each cσ(r), 2 ≤ r ≤ k1 − 1 contains two endpoints from two of
these line segments, and these endpoints can be joined with a line segment
totally contained in cσ(r).

This forms a connected curve that starts in ci and ends in cj , passing
through all the elements of the sequence. This curve consists of two types
of line segments: Those parallel to the θ1 direction, and those contained
in cσ(r), 2 ≤ r ≤ k1−1. But θ1 < γ, so the first type always goes upwards
and to the right of the γ direction. The second type may go to the right
or to the left; see (Figure 6).

By construction, such curve intersects Bi, and then at least one element
of {cσ(2), . . . , cσ(k1−1)} also intersects Bi, say cσ(s), and thus ci ≺γ cσ(s).
Denote by Bσ(s) the band bounded by the supporting lines of cσ(s) in the
γ direction. If cj intersects Bσ(s) then cσ(s) ≺γ cj , and by transitivity,
ci ≺γ cj .
Suppose then that cj does not intersect Bσ(s). It is easy to see that cj
should lie to the left of Bσ(s). By substituting cσ(s) for ci, and applying
our previous argument repeatedly, we obtain a subsequence {ci = cσ(i1),
cσ(i2), . . . , cσ(it) = cj} of {cσ(1), cσ(2), . . . , cσ(k1)}, with i1 < · · · < it, such
that cσ(i1) ≺γ cσ(i2), . . . , cσ(it−1) ≺γ cσ(it), and thus ci ≺γ cj .
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Figure 6: A sequence of θ1-covers from cj to ci, and the curve that passes through
the elements of the sequence.

3. The convex set cj is to the right of the band Bi. The proof is analogous
to that of the previous case, but now using the direction θ2 instead of θ1.

Since in all the three cases we have that ci ≺γ cj , then I ⊆ Ii,j , and therefore
I = Ii,j , which is a unique non-empty interval where cj blocks ci.

In what follows, we will show how to maintain P (≺α, C) as α changes from
0 to 2π in such a way that we can obtain P (≺γk+1

, C) from P (≺γk , C), or more
precisely, a triangulation Tk+1 from Tk in constant time, Tk to be defined in the
following section. This will enable us to obtain α0 in O(n2).

4 α-triangulations
We observe first that our problem can be solved by calculating the truncated
lattices P (≺γk , C) for every direction γk ∈ D, obtaining the γk-up-set of c1 for
each lattice, and then selecting a γi ∈ D which yields the smallest γi-up-set.
Since calculating each P (≺γk , C) can be done in O(n log n) [16], and D has 8

(
n
2

)
elements, this yields an O(n3 log n) time algorithm to solve our problem.

To improve this complexity, we will show that P (≺γk+1
, C) can be obtained

from P (≺γk , C) (more precisely, the γk-triangulation to be described shortly)
in constant time.

For α ∈ [0, 2π), extend P (≺α, C) to a planar lattice P ′(≺α, C) by adding two
special vertices, a source s and a sink t such that for each ci ∈ C, s ≺α ci ≺α t.
We can picture t (respectively s) as a very large convex set blocking all of the
elements of C (respectively blocked by all of the elements of C) in the direction
α (Figure 7).

For each α, we now extend P ′(≺α, C) to a triangulation Tα; that is, a planar
multigraph where every internal face—except the external one—is a triangle.
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Figure 7: The lattice P ′(≺α, C) for α = π/2.

We will call Tα the α-triangulation of C. To construct it, we use what we call
α-visibility.

Given two convex sets ci, cj ∈ C, we will say that cj is α-visible from ci if
there is an oriented line segment with direction α starting at a point on the
boundary of ci and ending at a point on the boundary of cj such that it does
not intersect any other convex set in C (Figure 8). Such line segments will be
called (ci, cj) α-visibility line segments.

Figure 8: cj is π
2
-visible from ci. Note that ca is not π

2
-visible from cb, and vice

versa.

If cj is α-visible from ci, the α-visibility zone of cj and ci is the union of all
the (ci, cj) α-visibility line segments (Figure 9). Note that the visibility zone of
ci and cj is not necessarily a connected region; see Figure 10(a).

It is important to remark that if cj is α-visible from ci, then ci ≺α cj ,
however it is not necessarily true that cj is an α-cover of ci. On the other hand,
if cj is an α-cover of ci, then cj is α-visible from ci and their α-visibility zone is
not empty and connected.

To obtain Tα we proceed as follows: If cj is α-visible from ci, and cj is not
an α-cover of ci, then we add to P ′(≺α, C) an oriented arc from ci to cj for
each connected component of the α-visibility zone of ci and cj . Each of these
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Figure 9: The shaded region is the α-visibility zone of cj from ci.

arcs can be drawn passing through their corresponding connected component of
the α-visibility zone of cj and ci. Clearly Tα is planar, and the above procedure
yields an embedding of Tα on the plane such that all of its faces, except for the
external face, are triangular faces; see Figures 10(a), 10(b).

The extra arcs added to P ′(≺α, C), will be called α-visibility arcs, to distin-
guish them from the regular arcs of P ′(≺α, C). In particular, for each direction
α, the source s and the sink t will always be joined by two visibility arcs bound-
ing the external face of Tα. In all our figures, α-visibility arcs will be drawn
with dashed curves, and the arcs from P ′(≺α, C) with solid line segments. The
triangulation Tα arising from the lattice shown in Figure 7 is given in Figure 11.

(a) Disconnected π
2
-visibility zone of ci

and cj .
(b) Oriented multi-edge connecting ci and
cj , in dashed.

Figure 10: Visibility zone and its corresponding oriented multi-edge.

Observe that all the arcs in Tα belong to two triangular faces of Tα, except for
two arcs connecting s and t. Let e be an arc of Tα that belongs to two triangular
faces f and f ′ of Tα. Each of these faces contains a vertex (an element of C)
that is not an endpoint of e. These elements will be called opposite elements
with respect to e.

Since D has 8
(
n
2

)
elements, there are at most 8

(
n
2

)
triangulations Tα, α ∈ D.

We now study how to obtain Tγk+1
from Tγk . We remark first that there are
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Figure 11: The triangulation Tα for α = π
2
.

many cases in which Tγk and Tγk+1
are the same; see Figure 12. It is also possible

that Tγk 6= Tγk+1
, but P ′(≺γk , C) = P ′(≺γk+1

, C). This could happen if Tγk+1

differs from Tγk only in visibility arcs.

Figure 12: The triangulations Tγk through Tγk+3 are the same, since the partial
order does not change, and the vertices involved preserve their γ-visibility.

Let ci and cj be the elements of C that define γk+1. By definition, γk+1

is parallel to one of the four tangents defined by ci and cj . If Tγk differs from
Tγk+1

, then either γk+1 is defined by an external tangent, and this caused a
visibility change, or γk+1 is defined by an internal tangent, and this caused a
change in the partial order.

We will now prove that the difference between the triangulations Tγk and
Tγk+1

(if any) will be an arc flip, as defined in [14]; that is, we will remove an arc
e from Tγk , and replace it by another arc connecting two elements of C which
are opposite with respect to e.

Lemma 4.1. Let γk, γk+1 ∈ D, and let ci and cj be the convex sets defining
γk+1. If Tγk 6= Tγk+1

, then Tγk+1
can be obtained from Tγk by flipping an arc in

Tγk . Such an arc flip involves arcs incident to ci, cj, or both of them.
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Proof. Without loss of generality suppose that γk+1 = π
2 and that the tangent

defining γk+1 is oriented from ci to cj . Such tangent can be left external, right
external, left internal, or right internal. However, the analysis for the case when
γk+1 is defined by a right external tangent is equivalent to the one for the left
external case, and the same applies to the right internal and left internal cases.

• γk+1 is defined by a left external tangent `. Since Tγk 6= Tγk+1
, no other

element of C intersects ` between ci and cj (Figure 13(a)). Therefore there
is a γk+1-visibility arc from ci to cj , and there is also a γk-visibility arc
from ci to cj .
Let ca be the first element below ci that intersects `, and cb the first
element above cj that intersects `. If no element of C intersects ` below
ci, then ca = s; similarly, if no element of C intersects ` above cj , then
cb = t.
It is not hard to see that cj is γk-visible from ca but not γk+1-visible from
it (to the left of ci) because ci blocks any line segment parallel to γk+1

between them. Also, cb is γk+1-visible from ci and not γk-visible from ci
(to the left of cj) because cj gets in the way of visibility. Finally, cb is γk-
and γk+1-visible from cj , ci is γk- and γk+1-visible from ca, and ca and cb
are γk- and γk+1-visible (Figure 13(b)).

(a) There is no change in visibil-
ity for the direction γk+1 when
there is an element between ci
and cj .

(b) The quadrangle defined by
ci, cj , ca, and cb and the flip
when going from γk to γk+1.

Figure 13: The case when γk+1 is a left external tangent.

In other words, the elements ci, cj , ca, and cb form a quadrangle in both
Tγk and Tγk+1

, with the γk-visibility arc from ca to cj being a diagonal in
γk of such a quadrangle, and this diagonal flips to the γk+1-visibility arc
from ci to cb in Tγk+1

.

• γk+1 is defined by a left internal tangent `. Since Tγk 6= Tγk+1
, no other

element of C intersects ` between ci and cj (Figure 14(a)). Therefore there
is a regular arc, defined in P ′(≺γk , C), from ci to cj .
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Let ca be the first element below ci that intersects `, and cb the first
element above cj that intersects `. If no element of C intersects ` below
ci, then ca = s; similarly, if no element of C intersects ` above cj , then
cb = t.
It is not hard to see that cj is a γk-cover of ci, but cj is not a γk+1-cover
of ci, and the arc from ci to cj in Tγk is replaced by the γk+1-visibility arc
from ca to cb in Tγk+1

. Finally, cb is γk- and γk+1-visible from ci and cj ,
and ci and cj are γk- and γk+1-visible from ca (Figure 14(b)).

(a) There is no change in visibil-
ity for the direction γk+1 when
there is an element between ci
and cj .

(b) The quadrangle defined by
ci, cj , ca, and cb and the flip
when going from γk to γk+1.

Figure 14: The case when γk+1 is a left internal tangent.

In other words, the elements ci, cj , ca, and cb form a quadrangle in both
Tγk and Tγk+1

, with the arc from ci to cj in Tγk being a diagonal of such
quadrangle, and this diagonal flips to the γk+1-visibility arc from ca to cb
in Tγk+1

.

Therefore Tγk+1
can be obtained from Tγk by performing an arc flip, and our

result holds. Even more, in each case we know if the arc to flip is an α-visibility
arc or a regular arc, and if it flips to a regular arc or to an α-visibility arc.

Figure 15 shows an example of the arc flip performed to transform Tγk into
Tγk+1

.
We will assume that for each direction γ in D, we also have associated to it

the two convex sets in C that define it. The next result follows:

Corollary 4.2. Given Tγk , we can obtain Tγk+1
in O(1) time.

5 An algorithm to find α0

In this section we prove that if we have the elements of D sorted then we can
find the direction α0 for which the up-set of c1 is minimized in O(n2) time.
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(a) The arc ci → cj before flipping. (b) The arc ca → cb after flipping.

Figure 15: Flipping of an arc when going from Tγk to Tγk+1 .

We will need two lemmas to prove our result.

Lemma 5.1. For any element ci ∈ C, as we go from γ1 to γ8(n
2)
, the up-set of

ci changes O(n) times.

Proof. Let ci, cj ∈ C, ci 6= cj . By Lemma 3.3, the set of directions for which
cj blocks ci is an interval Ii,j . This means that as we go from γ1 to γ8(n

2)
, cj

enters and leaves the up-set of ci once. Therefore the up-set of ci changes a
linear number of times.

Suppose next that for a direction γk ∈ D we have Tγk , that c1 and all the
elements of C that belong to the up-set of c1 are colored red, and the remaining
elements of C are colored blue. We now show how we can detect in constant
time whether the up-set of c1 changes.

Lemma 5.2. Given Tγk such that it vertices are colored as above, we can detect
whether the up-set of c1 changes in Tγk+1

in constant time.

Proof. Observe that if γk+1 is defined by an external tangent of two elements
ci, cj ∈ C, then P ′(≺γk , C) = P ′(≺γk+1

, C), and therefore the up-set of c1 re-
mains unchanged, and the coloring of C for γk+1 is the same as that for γk.

Suppose then that γk+1 is defined by an internal tangent of two elements
ci and cj of C. Two cases arise depending on whether γk+1 is a left or a right
tangent of ci and cj .

Suppose first that γk+1 is a right internal tangent. In this case, ci and cj are
comparable in Tγk+1

. Assume without loss of generality that ci ≺γk+1
cj . If ci

and cj were comparable in Tγk , then P ′(≺γk , C) = P ′(≺γk+1
, C) and the up-set

of c1 does not change.
Suppose then that ci and cj are not comparable in Tγk . Observe first that if

ci is red, and cj is blue, then cj becomes comparable to c1, and the up-set of c1
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changes. In all the other cases when γk+1 is a right internal tangent, the up-set
of c1 remains unchanged.

Suppose next that γk+1 is a left internal tangent of ci and cj . In this case,
it must happen that ci and cj are comparable in Tγk . Assume that ci ≺γk cj .
If both ci and cj are red, then cj could leave the up-set of c1, but only if it was
a γk-cover of ci. The case when ci is red and cj is blue in Tγk cannot happen,
since ci ≺γk cj . In all the other cases when γk+1 is a left internal tangent, the
up-set of c1 remains unchanged.

Therefore, the up-set of c1 can change only when γk+1 is a right internal
tangent and ci is red and cj is blue; or when γk+1 is a left internal tangent and
both ci and cj are red, and cj is a γk-cover of ci. We can test either case in
constant time. For the second case, we can check if cj is a γk-cover of ci, and
by Lemma 4.1 we know before each flip if that is the case.

Observe that if the up-set of c1 does not change, then the red and blue
coloring of the elements of Tγk is maintained in Tγk+1

in the sense that the red
elements in Tγk are the elements in the up-set of c1 in Tγk+1

.

Theorem 5.3. Suppose that we have the sorted set of directions D = {γ1, . . . ,
γ8(n

2)
}, and that for each γk, we are also given the pair of elements ci and cj

that generated it. Then we can find α0 in O(n2).

Proof. Construct P ′(≺γ1 , C) and Tγ1 in O(n log n) time. Next we calculate the
γ1-up-set of c1 in O(n) time by using BFS on P ′(≺γ1 , C).

By Corollary 4.2, we can obtain, one by one, the Tγ1 , . . . , Tγ
8(n

2)
in overall

quadratic time. By Lemma 5.2, we can find, also in overall quadratic time, the
set of directions in which the up-set of c1 changes. By Lemma 5.1, the up-set
of c1 changes a linear number of times. Each time this happens, we recolor the
elements of our current partial order in linear time. Thus we can also maintain
the coloring of the vertices of Tγ1 , . . . , Tγ

8(n
2)

in quadratic time.

Therefore we can find α0 in O(n2) time.

6 Some remarks about sorting D
If we assume that for each pair of elements of C, we can calculate their tangent
lines in constant time, then we can sort the elements of D in O(n2 log n) time.
A similar problem to that of sorting the elements of D arises from the problem
of sorting the intersections generated by arrangements of curves on the plane.

A family of x-monotone Jordan curves is called well behaved if each time
two curves intersect they cross each other, and any two curves intersect at
most s times, where s is constant ([12], pages 399 and 404). In this context,
it is also assumed that the intersections of any two curves can be calculated
in constant time; this is usually referred to as being under a proper model of
computation ([3, 15]).
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It is known that for arrangements of well behaved curves with n elements in
which any two of them intersect at most two times, the arrangement generated
by them, including the set of all of their intersections, can be constructed in
O(n2 ·2α(n)), where α(n) is the inverse of the Ackermann function [8]. However it
is not known how to sort these intersections according to the x-axis in o(n2 log n)
time, even when we consider arrangements of lines.

The well known sorting X+Y open problem (Problem 41 in [6]) says: Given
two sets X and Y of numbers, each of size n, how quickly can the set X + Y of
all pairwise sums be sorted? In [13] it is proved that the sorting X+Y problem
is a particular case of the problem of sorting the intersections of an arrangement
of lines according to the x-axis. The first reference to the sorting X+Y problem
was made in 1976, and it remains open: By the result proved in [13], sorting
the intersections of an arrangement of lines according to the x-axis is an even
stronger result.

In what follows, and to ease our presentation, we assume that the boundary
of the elements of C is smooth. This avoids an unenlightening case analysis
that leaves our results unchanged. To see that our problem can be reduced to
that of sorting the intersection points of arrangements of well behaved curves
in which any two of them intersect at most twice, we proceed as follows.

Let ci ∈ C, and let Ui and Li be the upper and lower chains of the boundary
of C. Under the dual transformation which maps a non-vertical line ` defined
by the equation y = mx−n to the dual point `∗ = (m,n) and a point p = (a, b)
to the line p∗ : y = ax− b, the points in Ui will be mapped to lines whose lower
envelope will be a concave x-monotone curve that we will call U∗i , and the points
in Li will be mapped to lines whose upper envelope will be a convex x-monotone
curve that we will call L∗i .

In the dual space, every line that intersects ci is mapped to a point bounded
from above by L∗i and from below by a U∗i , and every point inside ci is mapped
to a line enclosed between U∗i and L∗i respectively ([2, Section 7.4], (Figure 16).

Figure 16: An element ci of C and its mapping in the dual space.

Let ci, cj ∈ C. If a line ` is a tangent of ci and cj , then it intersects both
convex sets. Without loss of generality, suppose that it does so in Ui and Lj .
In the dual space this results in `∗ being the intersection point of U∗i and L∗j .
For simplicity, we will assume that there are no vertical tangents between pairs
of elements in C; we can always slightly rotate the whole set if necessary.

Let Γ = {U∗i , L∗i |i = 1, . . . , n} be an arrangement of curves. The next lemma
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follows:

Lemma 6.1. Any two curves in Γ intersect at most twice.

Proof. Let ci ∈ C, and let ` be a non-vertical line tangent to ci. Observe that if
` intersects ci at a point in Ui, then ci lies below `; if ` intersects the boundary
of ci at a point in Li, ci is above `.

Let ci, cj ∈ C, and let ` be a line tangent to both of them. If ` is an
external tangent, then ci and cj are both contained in the same closed half-
plane determined by `. Therefore ` intersects ci in Li (respectively Ui), and `
intersects cj in Lj (respectively Uj) (Figure 17).

If ` is an internal tangent to ci and cj , then one of them lies above ` and
the other below it. Thus if ` intersects ci in Ui (resp. Li), it intersects cj in Li
(resp. Ui).

Figure 17: Intersections of a tangent ` with the upper and lower chains of two
convex sets in C.

We now prove that any two τ∗i , τ∗j ∈ Γ intersect at most twice. Suppose
on the contrary that they intersect at least three times. Assume that τ∗i , τ∗j
were generated by upper or lower chains of two elements ci′ , cj′ of C. Since
the intersection points of τ∗i , τ∗j correspond to common tangents of ci′ , cj′ , one
of these tangents is an internal tangent, and the other an external tangent of
ci′ , cj′ . But an internal tangent touches a lower and an upper chain of ci′ , cj′ ,
and an external chain intersects either two lower or two upper chains of ci′ , cj′ .
Thus τ∗i , τ∗j intersect at most twice.

There are two ways in which the curves U∗i , L∗i , U∗j , and L∗j can intersect:
If ci is not contained in the vertical strip defined by the vertical tangents to
cj (or vice versa as in Figure 18(a)), then each pair of curves will intersect at
most once (Figure 18(b)). If ci is contained in the vertical strip defined by the
vertical tangents to cj (or vice versa; Figure 18(c)), then each pair of curves will
intersect at most twice (Figure 18(d)).

Therefore the problem of calculating and sorting D is equivalent to calcu-
lating and sorting the intersections of an arrangement of curves that intersect
each other at most twice.
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(a) (b)

(c) (d)

Figure 18: Top: Each pair of curves intersects at most once in the dual space.
Bottom: Each pair of curves intersects at most twice in the dual space.

7 Conclusions
In this paper we studied a variant of the classic separability problem. Given a
set C = {c1, . . . , cn} of pairwise disjoint closed convex sets in the plane, find a
direction α0 minimizing the number of elements of C that have to be removed,
along the direction α0, in order to reach a particular element c1 ∈ C. We present
an O(n2) time algorithm to solve this problem, under the assumption we have
the sorted set D of slopes of tangents to pairs of elements of C.
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