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México

Abstract. Let Pn be a set of n points on the plane in general position,
n ≥ 4. A convex quadrangulation of Pn is a partitioning of the convex
hull Conv(Pn) of Pn into a set of quadrilaterals such that their vertices
are elements of Pn, and no element of Pn lies in the interior of any
quadrilateral. It is straightforward to see that if P admits a quadrilateri-
zation, its convex hull must have an even number of vertices. In [6] it was
proved that if the convex hull of Pn has an even number of points, then
by adding at most 3n

2
Steiner points in the interior of its convex hull,

we can always obtain a point set that admits a convex quadrangulation.
The authors also show that n

4
Steiner points are sometimes necessary. In

this paper we show how to improve the upper and lower bounds of [6]
to 4n

5
+ 2 and to n

3
respectively. In fact, in this paper we prove an upper

bound of n, and with a long and unenlightening case analysis (over fifty
cases!) we can improve the upper bound to 4n

5
+ 2, for details see [9].

1 Introduction

Let Pn be a set of n points on the plane in general position. A triangulation T of
Pn is a partitioning of the convex hull Conv(Pn) into a set of triangles with dis-
joint interiors such that the vertices of the triangles in T are elements of Pn, and
no point in Pn lies in the interior of a triangle of T . There is an extensive litera-
ture on the study of triangulations of point sets (see e.g. [3, 8, 11, 12]); this is due
to the fundamental nature of the subject, as well as to the many applications tri-
angulations have in subjects such as mesh generation [4]. Triangulations are also
highly relevant in numerous other application areas such as pattern recognition,
computer graphics, solid modeling and geographic information systems.

A quadrangulation Q of a point set Pn is a partitioning of Conv(Pn) into a set
of quadrilaterals with disjoint interiors such that vertices of its elements are in
Pn, and no point in Pn lies in the interior of a quadrilateral of Q. In general, we do
not require that quadrilaterals be convex. A quadrangulation Q is called convex
if all its elements are convex. The study of quadrangulations of point sets from
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the point of view of the present paper was started by Bose and Toussaint [5]. A
good reference on quadrangulations is Toussaint’s paper [14], where applications
of quadrangulations to a variety of problems such as mesh generation, finite
element methods, scattered data, and interpolation are mentioned.

The problem of studying quadrangulations of bicolored point sets was started
recently. A point set Pn is called bicolored if each of its elements is colored red
or blue. A quadrangulation Q of a bicolored point set is a quadrangulation of
Pn in which each edge of Q joins a red to a blue point. In a recent paper,
Cortés, Marquez, Nakamoto and Valenzuela [7] showed that a necessary (but
not sufficient) condition for a bicolored point set to admit a quadrangulation is
that its convex hull have an even number of points, and that consecutive points
in Conv(Pn) have different colors. Their main results though, concern the the
flip graph of the graph of quadrangulations of bicolored point sets. Bounds on
the number of Steiner points needed to quadrangulate bicolored point sets are
studied in [2] and [1]. They show that by adding at most d 5m

12 + 7
2e Steiner

colored points in the interior of a bi-colored point set, we can always obtain
a new bi-colored point set that admits a bi-colored quadrangulation, and that
b 4m

12 c Steiner points are sometimes sufficient.
It is easy to see that a point set Pn admits a quadrangulation iff the convex

hull of Pn has an even number of vertices. Thus from now on we will assume
that the convex hull of all point sets considered here always has an even number
of vertices. In [5], Bose and Toussaint give an elegant method to quadrangulate
a point set, although the set of quadrilaterals they obtain may contain non-
convex quadrilaterals. First they define what they call a spiral triangulation (see
Figure 1(a)) whose dual graph contains a path from which a quadrangulation is
easily obtained, see Figure 1 (a) and (b).

(a) (b)

Fig. 1.

In this paper we study the problem of obtaining convex quadrangulations of
point sets. It is straightforward to see that the condition that the convex hull of
Pn has an even number of vertices is not sufficient to guarantee the existence of a
convex quadrangulation of a point set. For example, any set P5 of five points such
that four of them lie on Conv(P5) admits a quadrangulation, but not a convex
quadrangulation. In [6] the problem of obtaining convex quadrangulations of



point sets by adding Steiner points is studied. Following the terminology in [6],
we say that a point set P can be convex-quadrangulated with at most k Steiner
points if by adding at most k Steiner points to P (located in the interior of the
convex hull of Pn), we obtain a point set that admits a convex quadrangulation.
They show that any point set can be convex-quadrangulated with at most 3bn

2 c
Steiner points. They also show a point set in general position for which n

4 Steiner
points are necessary.

In this paper we improve on the lower and upper bounds proved in [6]. We
prove that n − 1 Steiner points are always sufficient, and that n

3 are sometimes
necessary to convex-quadrangulate any point set with n elements. We then out-
line a method for improving the upper bound to 4n

5 +2. This requires an extensive
and unenlightening case analysis that is skipped here. Full details appear in [9].

2 Convex quadrangulations of point sets

In this section we prove the following result:

Theorem 1. Any point set Pn can be convex-quadrangulated with at most n
Steiner points placed in the interior of the convex hull of Pn.

We now give the basic ideas of how to prove this result. The full details
appear in [2]. To facilitate the presentation, we will allow the Steiner points to
be placed on the boundary of Conv(Pn). We then proceed to show how these
points can be replaced by Steiner points in the interior of Conv(Pn). We proceed
as follows:

Choose the leftmost vertex on the convex hull of Pn, assuming without loss of
generality that this point is unique, and let it be labeled p. Relabel the elements
of Pn − {p} by {p0, . . . , pn−2} in descending order according to the slope of the
segments joining pi to p, i = 1, . . . , n− 1; see Figure 2(a)
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Consider p0 and p1. Two cases arise: p1 lies in the interior of Conv(Pn), or
p1 is a vertex of Conv(Pn). We begin quadrangulating as shown in Figure 2(b).

Observe that in the first case, we insert a Steiner point slightly below the
line segment joining p to p1, and in the second we place a Steiner point slightly
above the line joining p to p1 and on the boundary of Conv(Pn). We now proceed
inductively, assuming that if p2(i−1)+1 = p2i−1 is a vertex, there is a Steiner
point slightly below the line joining p to p2i−1, or if p2i−1 is an interior point to
Conv(Pn) then there is a Steiner point on the boundary of Conv(Pn) slightly
above the line segment joining p to p2i−1, i ≥ 0.
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Fig. 3.

Assume without loss of generality that p2i−1 is in the interior of Conv(Pn).
By the conditions stated in the previous paragraph, there is a Steiner point sj

on the boundary of Conv(Pn) slightly above the line joining p to p2i−1. Consider
next p2i and p2i+1, and assume that they are not vertices of Conv(Pn). Two
cases arise: p2i+1 is below the line joining p2i−1 to p2i, or it is above it; see
Figure 3(a) and 3(b), where Steiner points are shown as empty circles, and
points in Pn as solid small circles. The case shown in Figure 3(a) is solved as
shown in Figure 3(a1).
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The case shown in Figure 3(b) requires explanation. In this case, we place
a Steiner point on the edge of Conv(Pn) joining p to pn−2 close enough to p
and relabel it p. A second Steiner point is placed on the boundary of Pn slightly
above the line that passes through p2i+1 and the Steiner point that was relabeled
p. We then quadrangulate as shown in Figure 3(b1). From here on. the Steiner
point relabeled p substitutes for p in the following iterations (until it is (possibly)
replaced by another Steiner point). Observe that in both cases, two points in Pn

were processed and two Steiner points added. The case when one of p2i or p2i+1

is a vertex can be solved in a similar way; see Figure 4.
Special care should be taken when the last points to be processed are p(n−2)−1

and p2n−2 or when all the points of Pn except p2n−2 have already been processed.
In the latter case, it may be necessary to to introduce three Steiner points.
Figure 5 shows how to handle these cases. It is now easy to see that we have
used at most n Steiner points.

So far, we have proved that with the addition of at most n Steiner points in
the interior or the boundary of Conv(Pn), we can convex-quadrangulate Pn. We
now show how to modify the technique so that all the Steiner points used are
located in the interior of Conv(Pn). Let us assume that the edges of Conv(Pn)
are labeled in the clockwise direction along the boundary of Pn by e0, . . . , ek

such that e0 is the edge joining p to p0. We observe that if an edge ei has an
even number of Steiner points in it, it is straightforward to move these points to
the interior of Conv(Pn) and re-quadrangulate it. See Figure 6.

The problems arise when there is an edge that has an odd number of Steiner
points in it, as in Figure 5(b). To solve this problem, we proceed as follows:
Suppose that we have processed up to point pi, and that the next pair of vertices
involves a vertex of Conv(Pn). Suppose that pi+2 is a vertex of Conv(Pn) (the
case when pi+1 is a vertex in Conv(Pn) is handled in a similar way, and will be
left to the reader). Several sub-cases arise:

1. pi and pi+2 are vertices of Conv(Pn). The normal procedure would place a
single Steiner point on the edge ej joining pi to pi+2. This case is solved
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as shown in Figure 7(a). In this case, we can place one Steiner point in the
edge starting at pi+2 and the other on the line joining this point to p, and
quadrangulate as shown in Figure 7(b).

2. There are an even number of Steiner points on the edge ej , ending (in clock-
wise order) at pi+2; see Figure 8(b). Two sub-cases arise, namely the line
determined by pi and pi+1 does not intersect ej , or it does. In the first case
the problem is solved as shown in Figure 8(a); in the second, as shown in
Figure 8(b).

To finish the proof, we observe that once we reach pn−2, by a cardinality
argument, the edge joining p to pn−2 must have an even number of Steiner
points (introduced when the point p was duplicated as in Figure 3(b1) ), which
by our previous observations can be moved to the interior of Conv(Pn). This
completes the proof of Theorem 1. ut

To conclude we mention that using the same technique, but taking groups of
five elements of Pn instead of two, we can always convex-quadrangulate Pn using
four Steiner points for each five elements of Pn. The analysis involves studying
over 50 cases, and does not give any further insight into how to improve our
upper bound to what we conjecture is the correct number of Steiner points,
namely n

2 + c, c a constant. For this reason that result is not presented here. For
complete details, the reader is again referred to [9]. Thus we have:
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Theorem 2. Any set Pn of n points can be convex-quadrangulated with at most
d 4n

5 e+ 2 Steiner points located in the interior of Conv(Pn).

2.1 Lower bounds

In [6] it was proved that there are families of point sets (not in general posi-
tion) with n points for which dn−3

2 e − 1 Steiner points are needed to convex-
quadrangulate them. For points in general position, an example is also presented
in which n

4 points are necessary. The n
4 lower bound can be improved as follows:

Consider a convex polygon Q with an even number of vertices, and for every other
edge of Q, place a point in the interior of Q at distance ε from the middle point
of the edge. An example for an octagon is shown in Figure 9(a). It is easy now to
see that in any convex-quadrangulation of the point set, a Steiner point must be
placed in each of the shaded polygons shown in Figure 9(b), proving that there
are point sets for which n

3 Steiner points are needed to convex-quadrangulate
them.
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3 Conclusions

We have proved that any point set Pn whose convex hull contains an even number
of points can be convex-quadrangulated by adding to it at most n Steiner points
placed in the interior of of the convex hull of Pn. Using the same technique
involving a long, tedious and unenlightening process, our bound can be improved
to 4n

5 +2 Steiner points [9]. An example where n
3 Steiner points is also presented.

We believe that our upper bound and lower bounds are not tight, and that the
correct values for both of them are close to n

2 .
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