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Abstract. Assume that n directional antennae located at distinct points in the
plane are rotating at constant identical speeds. They all have identical range and
sensor angle (or field of view). We propose and study the Rotating Antennae Cov-
erage Problem, a new problem concerning rotating sensors for the uninterrupted
coverage of a region in the plane. More specifically, what is the initial orientation
of the sensors, minimum angle, and range required so that a given (infinite or
finite) line or planar domain is covered by the rotating sensors at all times? We
give algorithms for determining the initial orientation of the sensors and analyze
the resulting angle/range tradeoffs for ensuring continuous coverage of a given
region or line in the plane with identical rotating sensors of given transmission
angle and range. We also investigate other variants of the problem whereby for a
given parameter T (representing time) there is no point in the domain that is left
unattended by some sensor for a period of time longer than T . Despite the appar-
ent simplicity of the problem several of the algorithms proposed are intricate and
elegant. We have also implemented our algorithms in C++ and the code can be
downloaded on the web.

Key Words and Phrases: Angle, Antenna, Constant Speed, Coverage, Flood-
lights, Rotating, Sensors.

1 Introduction

Assume n directional antennae with identical range and beam width and located at dis-
tinct points in a planar finite or infinite domain. The antennae are rotating continuously
at constant identical speeds. A point in the domain is called covered by a sensor if it is
within the range and coverage area of at least one of the n sensors. The domain may
well represent a critical region all of whose points need to be covered so as to monitor
important events (such as animal migration, military activity, navigation guidance, etc.)
which is taking place within this domain. In this setting it is required that specific events
that may occur at some point within this domain be detected, located and reported by



at least one of the sensors at all times. More specifically we consider the following
Rotating Antennae Coverage Problem concerning the monitoring of a region.

Assume we are given a finite or infinite planar region. We have n sensors mod-
elled as directional antennae with given identical ranges and beam widths. The
sensors are rotating continuously with constant identical speeds. We are con-
cerned with providing an algorithm for determining the initial orientation of the
antennae so as to ensure that no point in the domain is ever left unmonitored at
any time. In addition, we are also interested in algorithms for attaining optimal
antennae angle/range tradeoffs for accomplishing this monitoring task.

In a further (and natural) generalization, we may also be interested in two additional
parameters. 1) Gap Time T : for some real number T ≥ 0, it is required that specific
events that may occur at some point in this domain be detected, located and reported by
at least one sensor within any specified time interval whose length does not exceed a
certain gap T , and 2) Number of Monitoring Antennae k: for some integer k ≥ 1, every
point in the region is monitored by at least k antennae at all times. We use the notation
RACk(T ) to denote this Rotating Antennae Coverage problem with monitoring time T
and number of monitors k. When k = 1 we use the abbreviation RAC(T ), when T = 0 the
abbreviation RACk, and when both k = 1,T = 0 we simply use the abbreviation RAC. In
particular, in RACk we want to ensure that every point in the region is always monitored
by at least k sensors at all times. Thus, despite the fact that the coverage provided by
each individual sensor may be intermittent (due to limitations on the antenna angle
and range) and may result in insufficiently covered “corridors” within the plane region
during the antenna rotation, the coverage provided by the ensemble of all the rotating
sensors when taken together guarantees complete coverage of the region at all times.

To address the Rotating Antennae Coverage problem we propose a rotation model
whereby directional antennae rotate at constant identical speeds in the same direction.
This same model could also be used if it was required to locate the activities and report
events if sensors were also location aware (i.e., they knew their geographic coordinates).

1.1 Preliminaries, definitions, and notation

In the sequel we define our coverage problem precisely and provide basic terminology,
definitions and notation. Throughout the paper we assume that we have n identical di-
rectional sensors. Each sensor consists of a rotating directional antenna with range (also
called radius) r > 0, beam width (also called angle) 0 ≤ φ ≤ 2π that rotates around its
apex (which is at a fixed position) with constant speed in clockwise order. All antennae
rotate in the same direction at constant identical speeds. The antennae are set at some
initial orientation (determined by an algorithm) that depends on the particular location
of its sensor in relation to the remaining sensors in the set of points. The coverage area
of a sensor at time t is the circular sector of radius r and angle φ determined by the
sensor during its rotation at time t. A point in a given planar region R , is called covered
at time t if it is within the range of at least one of the n sensors at time t. We study the
problem of covering R with a set of rotating directional sensors of identical angle φ



and range r. We distinguish two types of sensors: 1) directional sensors with given an-
gle and finite range, for example, video cameras, and 2) directional sensors with given
angle but unlimited (or infinite) range, which we refer to in the sequel as floodlights.

Note that although floodlights (i.e., sensors with infinite range) may not be tech-
nically realistic, nevertheless they will prove to be quite convenient in subsequent dis-
cussions in that they will simplify proofs and mathematical presentation. With these
explanations in mind we are ready to give the main definitions.

Definition 1 (Angles Φr(P,R ) and Φ(P,R )). Let P be a set of points in the plane
and R be a planar region. Let Φr(P,R ) be the infimum over all angles φ ≤ 2π such
that if sensors of angle φ and range r are located at the points then there is an initial
orientation of the sensors so that the whole region R is covered at all times under
continuous rotation of the directional antennae. For the case of floodlights we have
infinite range r =+∞ in which case we use the notation Φ(P,R ).

Definition 2 (Angles Φr(n,R ) and Φ(n,R )). Let R be a region in the plane. Let
Φr(n,R ) be the infimum over all Φr(P,R ) where P is any set of n directional sen-
sors in the plane. For the case of floodlights we have infinite range r = +∞ in which
case we use the notation Φ(n,R ).

We note that although in the sequel we will be assuming that the sensors lie in the
region R under consideration the definitions make sense even without this assumption.
A similar definition can be given for covering a line L (i.e., only for points located
on the line) using rotating antennae and the corresponding notation is Φ(n,L). The
coverage problems we are interested in can be formulated precisely as follows.

Problem 1. Determine the beam width Φr(P,R ) such that there is an initial orientation
of the sensors in P with range r so that the whole region R is covered under continuous
rotation of the directional sensors. Similar problem for Φ(P,L).

Problem 2. Determine the beam width Φr(n,R ) such that there is an initial orienta-
tion of n directional sensors with range r so that the whole region R is covered under
continuous rotation of the directional sensors. Similar problem for Φ(n,L).

We will see in the sequel that the coverage problems for infinite and finite range
are related. As usual, ∠(ABC) denotes the angle between the line segments AB and BC.
Assume we have a point K = (x,y). For any angle ρ define the point Kρ = (x,y)+ reiρ.

Definition 3 (Rotating Antenna Sector). Consider a directional antenna located at a
point K with beam width φ and radius r as it rotates clockwise. We define as follows the
sector delimited by the antenna at time t.

-Let FK(r,ρ;0) denote the initial sector defined by the sensor when its orientation is
ρ; this is the circular sector defined in a circle of radius r, centered at K and delimited
by the radii KKρ and KKρ+φ.

-At time t the sensor will rotate by an angle of t radians. Let FK(r,ρ; t) denote the
circular sector at time t which is defined in a circle of radius r, centered at K and
delimited by the radii KKρ−t and KKρ−t+φ.



Although we omit the details, a similar definition can be given when r is infi-
nite and we simply denote the sector defined by the sensor located at the point K by
FK(ρ; t). Observe that the orientation at time t is invariant to the initial orientation, i.e.,
FK(r,ρ; t) = FK(r,ρ− t;0).

1.2 Related work

There exists research in computational geometry that is somewhat related to our prob-
lem. For example, the art gallery problem which is concerned with placing the minimum
number of guards in a planar domain so as to cover a given region or perimeter and
has been studied in various different settings. For the art gallery problem, Chvatal [2]
proved that n/3 guards are always sufficient and sometimes necessary to guard a simple
polygon with n vertices and later Fisk [3] gave a shorter proof. In these works, guards
have an omnidirectional field of view. For additional details on art gallery problems the
reader is referred to [7,9], as well as to [4] for a more recent randomized algorithm
for sensor placement in a simple polygon. Closely related is research with floodlights
which corresponds to our antenna model with fixed angle but infinite range. For exam-
ple, [11] proposes the problem of illuminating the plane with floodlights and proves that
the infinite plane can be illuminated with n floodlights if and only if the sum of angles
is at least 2π.

There is extensive literature in mobile and sensor networks concerning coverage,
e.g., see [10,1]. The k–coverage problem with isotropic sensors was studied in [6]. In
[12] and [5] the authors studied the k-coverage problem and the relationship between
coverage and connectivity. Additional research can also be found in [8].

It is important to point out that all the literature mentioned above differs from our
setting in that the antennae are static while we are concerned with a dynamic model of
rotating antennae.

1.3 Results of the Paper

We provide several algorithms depending on the number of points and their relative
location that determine for a given set of points in the plane the initial orientation of
the sensors, as well as minimum angle, and range required so that a given (infinite or
finite) line or planar domain is covered at all times regardless of the fact that the sensors
are rotating. We give algorithms for determining the initial orientation of the sensors
and study angle/range tradeoffs given that the sensors rotate with identical speeds and
have a given field of view and range. Section 2 is concerned with lattice configurations,
and Section 3 with arbitrary configurations of points in the plane. In both cases we
consider algorithms for orienting the antennae so as to cover a given line or region
provided the sensors are located in lattice configurations or arbitrary positions in the
plane. In Section 4 we look at other variants of the problem for a given parameter T
(representing the gap time) whereby no point in the domain is left unattended by a
sensor for a period longer than T . Several of the algorithms proposed are intricate and
elegant. We conclude with discussion of open problems. The main results of the paper
are summarized in Table 1, for infinite, and Table 2 for finite antennae, respectively.



Points P in Range Beam Width

Line L of size r r Φr(P,L) = 3π

n
Lattice L of size m×n r ≤ 2max(n,m)/3 Φr(P,L)≥ 2π

r
Lattice L of size m×n r ≤ 2max(n,m)/3 Φr(P,CH(L))≥ 2π√

r2−1
General Position rDT (P) Φr(P,CH(P))≥ π

Table 1: Summary of results with infinite range. We use the notation rDT (P) =
2maxu,v(d(u,v) : {u,v} ∈ DT (P)), where DT (P) is the Delaunay Triangulation of the
set of points.

Points P in Coverage Region Beam Width

Line L L Φ(P,L) = 3π

n
Line L Hu(L) Φ(P,Hu(L)) = 3π

n
General Position Plane P Φ(2,P ) = 2π

General Position Plane P Φ(3,P ) = π

Table 2: Summary of results with finite range. We use the notation Hu(L) to denote the
upper half-plane determined by L .

2 Lattice Configurations

In this section we consider sensors located in lattice positions, namely the 1× n and
m×n grid.

2.1 Infinite line

Theorem 1. For any set P of n≥ 2 floodlights on a line L we have that Φ(P,L) = 3π

n .

Proof. Without loss of generality assume that the line L to be covered is horizontal. Let
P = {p0, p1, ..., pn−1} be the set of n sensors on the line L and let the points be such
that the x-coordinate of pi is less than the x-coordinate of pi+1, for i = 0,1, . . . ,n−2.

First we prove that an angle of 3π

n is always sufficient. Let the initial orientation of
the sensor at pi be Fpi(i · 3π/n;0), for i = 0,1, . . . ,n− 1; see Figure 1. We define the

Fig. 1: Initial orientation of the directional sensors on L .

dual plane as follows: each sensor i is the circular sector of a unitary circle C delimited
by i · 3π/n and (i+ 1) · 3π/n, and at time t, the line L is represented as a directed line



segment
−→
L such that

−→
L crosses the center of C and the head of

−→
L forms an angle t

with the horizontal; see Figure 2b.
In the dual plane, sensors are static while it is the line L that rotates all the time.

The orientation
−→
L of L preserves the sensor rotations in the original plane. The head

of
−→
L represents ∞ and the tail represents −∞ in the original plane.

t

c

a, b

(a) Orientation at t.

a

b

(b) If Φ(n,L)< 3π

n , L is not always
fully covered.

Fig. 2: Directional sensors at a unique point.

Since the sum of the angles is 3π, the circular sector [0,π) of C in the dual plane is
always covered by two sets S1,S2 ⊆ P of sensors while the circular sector [π,2π) of C
in the dual plane is covered by one set S3 ⊆ P of sensors. Observe that each sensor in S3
is between S1 and S2 in the original plane. Let a ∈ S1, b ∈ S2 and c ∈ S3 be the sensors
that cover a segment of

−→
L at time t in the dual plane. If a and b cover the head of

−→
L , c

covers the tail. Therefore, L is fully covered by c and b in the original plane. Similarly,
if a and b cover the tail of

−→
L , c covers the head. Therefore, L is fully covered by a and

c in the original plane.
Now we prove that an angle of 3π

n is always necessary. Assume on the contrary
that the sum of angles is less than 3π. Therefore, there exists a time t when only two
sensors, say a and b, cover a segment of

−→
L in the dual plane as depicted in Figure 2b.

Assume a covers the tail and b covers the head of
−→
L in the dual plane. Therefore, L

is fully covered in the original plane. However, at time t +π, a covers the head and b
covers the tail of

−→
L in the dual plane. Therefore, the line segment ab of L in the original

plane is not covered. This contradicts the assumption. The pseudocode is presented in
Algorithm ??.

Algorithm 1: Initial orientation of sensors on a line L that covers L .
input : {p0, p1, ..., pn−1} : sensors on the horizontal line
output: Initial orientation of {p0, p1, ..., pn−1}
Let the x-coordinate of pi be less than the x-coordinate of pi+1;1
for i← 0 to n−1 do2

Orient the antennae at pi as Fpi(i ·3π/n;0);3



This completes the proof of the theorem.
ut

Observe that if L is finite, then it is sufficient to use a range equal to the length of
L . Thus, we have the following corollary to Theorem 1 when L is finite.

Corollary 1. For a set P of n ≥ 2 sensors on a line L of length r, we have that
Φr(P,L) = 3π

n .

2.2 Square lattice

Theorem 2. Consider a set P of n directional sensors located in a lattice L of size
m×n and let the antennae have range r such that max(n,m)≥ d3r/2e. Then, we have
that Φr(P,L)≥ 2π

r .

Proof. Assume without loss of generality that n≥m. It is sufficient to orient the anten-
nae and provide coverage for a single row of the lattice and apply the result to each row
so as to cover each point in P; see Figure 3.

r

r

Fig. 3: r = 6, a lattice of size n = 9 and the initial positions.

Let P = {p0, p1, ..., pn−1} be the sensors in the row j and let the points be such
that the x-coordinate of pi is less than the x-coordinate of pi+1. Orient the ith sensor
as Fpi(r, i ·π/r;0). To prove that L is covered, consider a pair of sensors pi and p j at
distance d3r/2e. Since n ≥ d3r/2e, there are 3r/2 sensors between pi and p j. From
Corollary 1, the line segment pi p j is always covered since d 3r

2 eΦr(P,L) ≥ 3π. The
pseudocode is presented in Algorithm ??.

This completes the proof of the theorem. ut

3 Planar Configurations

In this section we consider configurations of sensors in the plane and study coverage
for half-plane, infinite plane, and the convex hull of a set of points.



Algorithm 2: Initial orientation of sensors on a lattice L of size m×n that covers
L .

input : P,r: P points on a lattice of size m×n such that n≥ d3r/2e
output: Initial orientation of P
for i← 0 to m−1 do1

for i← 0 to n−1 do2
Orient the antennae at p j,i as Fp j,i(r, i ·3π/r;0);3

3.1 Covering the Half-Plane

First we consider orientation algorithms for covering a half-plane determined by an
infinite line. We say that two sensors a and b with sensor angle φ form a dark corridor
at time t if Fa(ρ; t)∩Fb(ρ+φ; t) = /0.

Lemma 1. Let a and b be two directional sensors of angle φ on a horizontal line.
Assume that the initial orientations of the antennae at a,b are Fa(π− φ;0),Fb(π;0),
respectively. Further, assume that the x-coordinate of a is less than the x-coordinate of
b. If 0≤ t ≤ π, the intersection of the sensors covers a circular sector 2φ. If π < t < 2π,
they leave a black corridor.

Proof. Let la, lb,ra and rb be the left and right rays that define the wedges of the sen-
sors at a and b respectively. Let h be the horizontal. At time t, ∠(ra,h) = π− t − φ,
∠(la,h) = π− t, ∠(rb,h) = π− t and ∠(lb,h) = π− t +φ. Observe that ∠(ra,rb) =−φ

and ∠(lb, la) = φ. Therefore, when π < t < 2π, the rays of ra and lb do not intersect, i.e.,
Fa(π; t)∩Fb(π−φ; t) = /0 since the x-coordinate of a is less than the x-coordinate of b
and a black corridor is formed; see Figure 4b. However, when 0≤ t ≤ π, ra intersects lb
since the x-coordinate of a is less than the x-coordinate of b. Consider the intersection
point x between ra and lb; see Figure 4a. It is not difficult to see that la and lb determine
a coverage wedge incident to x of angle 2φ. ut

a b

φ φ

2φ

x

ra

lb
la rb

h

(a) 0≤ t ≤ π

a
b

φ
φ

(b) π < t < 2π a dark corridor is
formed

Fig. 4: Two directional sensors.

Theorem 3. For a set P of n≥ 3 floodlights on a line L and the upper half-plane Hu(L)
determined by L we have that Φ(n,Hu) =

3π

n .



Proof. We will prove that the initial orientation depicted in Figure 1 of Theorem 1 also
covers the half-plane Hu(L) determined by L . Similarly to the proof of Theorem 1
we assume that L is horizontal and the x-coordinate of the sensor pi is less than the
x-coordinate of the sensor pi+1, for all i = 0,1, . . . ,n−2. As before, we define the dual
plane as follows: 1) each sensor i is the circular sector of a unitary circle C delimited
by i · 3π/n and (i+ 1) · 3π/n, 2) at time t, the line L is represented as a directed line
segment

−→
L such that

−→
L crosses the center of C and the head of

−→
L forms an angle t

with the horizontal, and 3) the upper half-plane Hu(L) determined by L is represented
by the left half-plane determined by

−→
L ; see Figure 2a.

In the dual plane sensors are static and L rotates during the time. The orientation
−→
L

of L preserves the sensor rotations and the upper half-plane Hu of the original plane.
Since the sum of the angles is 3π, the circular sector [0,π) of C in the dual plane

is always covered twice and the circular sector [π,2π) of C is covered once. Let S1 be
the set of circular sectors that covers the head of

−→
L and let S2 be the set of circular

sectors that covers the tail of
−→
L . Observe that either |S1| = 1 and |S2| = 2 or |S1| = 2

and |S2| = 1. We will prove that there exists an increasing subsequence p j, p j+1, ..., pi

so as by Lemma 1 it covers the left half-space determined by
−→
L . If |S1|= 1, let pi ∈ S1

and p j ∈ S2 such that j is the min label in S2. Otherwise if |S1| = 2, let pi ∈ S2 and
p j ∈ S1 such that j is the min label in S1. Since j < i, the increasing subsequence is
determined by the sensors p j, p j+1, ..., pi.

To prove the bound is tight, assume by contradiction that Φ(n,Hu(L))< 3π/n; see
Figure 2b. Since Φ(n,Hu)< 3π/n they cover less than 3π. Therefore, there exists a time
t such that only two sensors fully cover

−→
L . Assume a covers the tail and b covers the

head of L . Therefore, L is fully covered. However, at time t +π, a covers the head and
b covers the tail of L . Therefore, the line segment ab is not covered. This contradicts
the assumption. This completes the proof of the theorem.

ut

Observe that if the points are uniformly distributed in the lower line of a rectangle
of size l × 1, it is sufficient a range equal to

√
l2 +1. Thus, we have a corollary to

Theorem 3.

Corollary 2. For a set P of n ≥ 2 sensors uniformly distributed in the lower line of a
rectangle R of size l×1, we have that Φr(P,R ) = 3π

n ; where r =
√

l2 +1.

Theorem 4. Assume we are given a set P of mn directional sensors of radius r located
in a m× n lattice L where max(n,m) ≥ d3r/2e. Let CH(L) be the convex hull of L .
Then, we have that Φr(P,CH(L))≥ 2π√

r2−1
.

Proof. Without loss of generality assume that n > m. Let pi, j be the sensor at row i
and column j for 0 ≤ i < m and 0 ≤ j < n. Orient pi, j as Fpi, j(r, j · π√

r2−1
;0); see

Figure ??. To prove that it is always sufficient, consider a pair of sensors pi, j and pi,k
in the row i at distance d3r/2e. Since n ≥ d3r/2e, there are 3r/2 sensors between pi
and p j. From Corollary 2 the area between row i and i+1 is fully covered with range r
since d 3r

2 eΦr(P,CH(L)) > 3π. We give below the pseudocode of the main algorithm.
This completes the proof of the theorem. ut



r

r

Fig. 5: r = 4, a grid of size 4×9 and the initial position.

Algorithm 3: Initial orientation of sensors on a lattice L of size m×n that covers
CH(L).

input : P,r: P points on a lattice of size m×n such that n≥ d3r/2e
output: Initial orientation of P
for i← 0 to m−1 do1

for i← 0 to n−1 do2

Orient the antennae at p j,i as Fp j,i(r, i · 2π√
r2−1

;0);3

3.2 Covering the plane

Next we consider antennae orientation algorithms for covering the entire plane. The
case of coverage with two antennae is simple, but coverage with three antennae turns
out to be quite intricate and elegant.

Theorem 5. Let P be the entire plane. We have that Φ(2,P ) = 2π.

Proof. Assume by contradiction that ω := Φ(2,P )< 2π; see Figure 5.
Let p1, p2 be two floodlights of angle ω. Assume that there is an initial orientation

of p1 and p2 such that every point in the plane is covered at all times. However, there
exists an uncovered wedge w1 forming an angle 2π−ω emanating from p1 and another
uncovered wedge w2 forming an angle 2π−ω emanating from p2. Clearly, at some time
t as the sensors rotate with identical constant speeds the sensor p2 will be within the
wedge w1. But then it is not difficult to see that a planar region is left which is covered
by neither p1 nor p2, which is a contradiction. ut

Theorem 6. Let P be the entire plane. We have that Φ(3,P ) = π.



Fig. 6: Φ(2,P ) = 2π.

Proof. Let p,q,r be three directional sensors in the plane. If the sensors are co-linear
then the initial configuration depicted in Figure 6 can be easily seen to be correct.

q rp

Fig. 7: Initial orientation for three sensors in co-linear position.

Therefore we may assume, without loss of generality, that the three sensors are not
in co-linear position. Further we may assume that the line segment pr is horizontal and
q is above pr. Let C be the circumcircle C of p,q,r. Orient p as Fp(l;0), where l is
the tangent of C at p, q as Fq(π+∠(qpr);0) and r as Fr(0;0) as depicted in Figure 7a.
Consider any point a in the circumference of C of pqr. Observe that the angle that each
sensor forms with a is equal to the arc; see Figure 7b. Therefore, they intersect at a. It
can be verified that when a is in the arc pr, qr leave an uncovered wedge with apex at
p. However, p covers the uncovered wedge. When a is in the arc rq, the roles change
to p,q and r respectively and when a is in the arc qp, the roles change to pr and q
respectively. This proves the upper bound if the points are not collinear.

Assume now that p,q,r are collinear. Without loss of generality assume that they
are on a horizontal line and the x-coordinate of q is greater than the x-coordinate of p
and smaller than the x-coordinate of r. Orient p,q,r as Fp(0;0), Fq(π;0) and Fr(0;0).
By Lemma 1, p and q cover the plane at time t < π and q and r cover the plane at time
π≤ t < 2π.

To prove that the bound is tight, assume by contradiction that Φ(3,P ) = π− ε.
Assume that at time t the sensors cover the plane. Therefore, there exists a point a in
the coverage area of p where two line wedges incident to q and r intersect since two
sensor cannot cover the plane as depicted in Figure 7c. However, a is not covered at
time t +π since Φ(3,P ) = π− ε. ut

Theorem 7. Let P be a set of n≥ 3 points in general position and CH(P) be the convex
hull on P. We have that Φr(P,CH(P)) ≥ π where r is twice the longest edge of the
Delaunay Triangulation of P.



p

q

r

(a) Initial orientation.

p

q

r

a

(b) Initial orientation.

q

r

a

p

(c) Lower bound.

Fig. 8: Three points covering the plane.

Proof. Consider the Delaunay triangulation DT (P) of P. Let G be the dual graph of
DT (P) where each triangle 4(u) of DT (P) is a vertex u in G and two vertices u,v are
adjacent in G if and only if 4(u)∩4(v) 6= /0 in DT (P). Observe that unlike Voronoi
diagrams, there is no vertex in the dual for the outer face and G is not planar. Let I be
a maximal independent set of G. For each vertex u ∈ I we orient the directional sensors
that form the triangle4(u) as in Theorem 6. Let r be twice the longest edge of DT (P).
We claim that r is always sufficient to cover CH(P). To prove the claim assume on the
contrary that it is not sufficient. Therefore, there exists a time where a triangle 4(v)
is not fully covered. From Theorem 6, v is not a neighbor of u ∈ I since the sensors
of 4(u) cover all the adjacent triangles at all times. Therefore I is not maximal. This
contradicts the assumption.

ut

4 Coverage with Gap Time at Most T

In this section we study a variant of the problem in which we allow points to be un-
covered for a period of time no longer than T . Let Φr(P;R ,T ) be the infimum over
all angles φ ≤ 2π such that if sensors of angle φ and range r are located at the points
then there is an initial orientation of the sensors so that every point is left uncovered
for a period of time no longer than T < 2π. under continuous rotation of the directional
sensors. We will prove that in fact the two problems are equivalent.

Theorem 8. Φr(P,R ;T ) = Φr(P,R )−T

Proof. Assume an initial orientation of the sensor in P with angle Φr(P,R ). For each
sensor p of P, we will show how to orient p with angle Φr(P,R )−T such that every
point is uncovered for a period of time no longer than T . Let Fp(r,ρ;0) be the initial
orientation of p with angle Φr(P,R ) such that R is fully covered at all times. Let the
initial orientation of p as Fp(r,ρ+ T ;0) with angle Φr(P,R )− T We claim that the
initial orientation does not leave any point unattained for longer than time T . Assume
on the contrary that there exists a point a such that it is uncovered for a time greater than



T . Therefore, a is not covered by any sensor pi with angle Φr(P,R ). This contradicts
the assumption.

ut

5 Software

We implemented our algorithms in C++ to confirm our results. The programs can be
downloaded from http://people.scs.carleton.ca/ omponce/floodlights/index.html.

6 Conclusion and Open Problems

We have studied the problem of determining the initial orientation of rotating directional
sensors so as to ensure uninterrupted coverage of a planar region under continuous ro-
tation of the antennae. We studied the problem in several settings, including sensors
located in lattice and arbitrary configurations as well as for various types of regions.
Several open problems remaining concern angle/range tradeoffs. Additional problems
concern determining tight bounds on the angle Φ(P) for arbitrary and specific config-
urations of points P, e.g., points in convex position, etc. In this paper we proved that
Φ(n,P ) is equal to 2π for n = 2, and equal to π for n = 3. However, nothing non-trivial
is known for n ≥ 4. Additional interesting questions arise by considering alternative
settings concerning the speeds and rotation directions of the antennae, as well as k-
coverage whereby k antennae are required to monitor all points at all times.
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