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Abstract

We consider the problem of guarding curvilinear art galleries. A closed arc a joining two
points, p and q, in the plane is called a convex arc if the curve obtained by joining a with the line
segment pq encloses a convex set. A piece-wise convex polygon P with vertices v0, . . . , vn−1 is
the region bounded by a set {a0, . . . , an−1} of n convex arcs with pairwise disjoint interiors such
that ai joins vi to vi+1, addition taken mod n, each of them convex with respect to the interior
of P . A piece-wise convex art gallery is the connected region bounded by a piece-wise convex
polygon. We show that dn

2 e point guards are always sufficient in order to guard a piece-wise
convex art gallery. This bound is best possible.

1 Introduction

Let V = {v0, v1, . . . , vn−1} be a set of n points in the plane together with a set of straight-line
segments E = {e0, e1, . . . , en−1} with pairwise disjoint relative interiors such that the endpoints of
ei are vi and vi+1, i = 0, . . . , n − 1, addition taken mod n. Let A be the region bounded by the
closed curve obtained by joining the elements of E. We call A an art gallery, E and V will be called
the edge and vertex sets of A, respectively. A set G ⊆ A of points, called guards jointly monitor
A if for any point p ∈ A there is a point q ∈ G such that the line segment pq lies in A. A classic
problem in computational geometry is finding a minimum set of guards for a given art gallery.
In the 1970s, Chvátal [6] proved that bn3 c guards are always sufficient and sometimes necessary
to guard any art gallery with n vertices. Since then many variations of this problem have been
studied; see [18, 17, 21] for a detailed reference on art gallery problems. Applications areas of this
kind of problems include robotics [12, 22], motion planning [14, 16], computer vision and pattern
recognition [2, 19, 20, 23], computer graphics [5, 15], CAD/CAM [3, 7], and wireless networks [8].
Recently Karavelas, Tsigaridas, and Tóth [11] generalized the art gallery problem to curvilinear art
galleries, where the edges in E are arbitrary Jordan arcs with pairwise disjoint relative interiors,
rather than line segments. In general, the minimum number of guards for a curvilinear art gallery
cannot be bounded in terms of the number of vertices. If, however, we restrict the arcs to be
convex, the number of guards is bounded by a function of the number of vertices. A Jordan arc ai
between points vi and vi+1 is convex if the closed curve containing ai and the line segment vivi+1

enclose a convex region Ci of the plane; see Figure 1 (left).
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Figure 1: Left: A convex arc. Right: A piece-wise convex polygon that needs dn2 e point guards.

Notice that each convex arc has a convex and a reflex side. A is a piece-wise convex art gallery if
its interior lies on the convex side of each arc ai; see Figure 2 (left). In the remainder of this paper,
curvilinear art gallery will always refer to a piece-wise convex curvilinear art gallery.
Karavelas, Tsigaridas, and Tóth [11] proved that b2n3 c vertex guards (that is, guards restricted to
be on the vertices of A) are always sufficient and sometimes necessary to guard any curvilinear
art gallery with n ≥ 2 vertices; they also proved that dn2 e point guards (that is, guards anywhere
inside A) are sometimes necessary. Cano, Espinosa and Urrutia [4] proved that b5n8 c point guards
are always sufficient to guard a curvilinear art gallery with n ≥ 2 vertices. Recently, Karavelas [10]
showed that b2n+1

5 c edge guards (that is, guards allowed to move along edges of the gallery) are
always sufficient to guard any curvilinear art gallery with n vertices, and bn3 c edge guards are
sometimes necessary. In this paper, we prove that any curvilinear art gallery with n vertices can
be guarded with at most dn2 e point guards.

Theorem 1. Let A be a piecewise-convex curvilinear art gallery with n vertices. Then dn2 e guards
are always sufficient and sometimes necessary to guard A.

The proof is based on a convex decomposition of a piece-wise convex art gallery with n vertices
into n+ 1 convex cells. We partition the cells into dn2 e sets, each of which can be monitored by a
single guard lying on their common boundary. We use a special convex decomposition (discussed
in Section 3) in which every convex cell has at least two vertices of the gallery on its boundary.
Such a decomposition can be constructed by a technique reminiscent of that of Al-Jubeh et al. [1].
It is easy to see that the upper bound of dn2 e in Theorem 1 is best possible. For every n ≥ 3, there
is a curvilinear art gallery with n vertices that requires dn2 e point guards. A construction due to
Karavelas, Tóth and Tsigaridas [11] is shown in Figure 1 (right). To close our paper, we give a
simpler proof for the sufficiency of b2n3 c vertex guards for curvilinear art galleries.

1.1 Notation

We introduce some notation. Let σ be a simple polygonal closed curve in the plane. For two
vertices x, y ∈ σ we denote by [x, y] the counterclockwise path that starts with x and ends at y.
Clearly, [x, y] ∪ [y, x] = σ and [x, y] ∩ [y, x] = {x, y}. Let P be a polygonal path. If the number of
vertices in P is even, then we call P an even path, and an odd path otherwise. Analogously, we call
a cycle with an even (resp., odd) number of vertices an even cycle (resp., odd cycle).
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2 Convex Decompositions

Let A be a curvilinear art gallery. A convex decomposition of A is a finite set C of closed convex
regions with pairwise disjoint interiors, called cells, such that their union is A. The boundary of
every cell in C consists of some straight line segments lying in A and some convex arcs contained
in the boundary of A. We define the vertices of C to be the endpoints of the straight line segments
on the boundaries of cells in C. Every vertex of C is either a vertex of the art gallery or a Steiner
vertex, which lies in the interior of A or in the relative interior of some arc ai. The edges of C are
the portions of these line segments between consecutive vertices of C. See Figure 3 for an example.
We denote by δ(C) the graph formed by the edges and vertices of C. We allow any possible straight
line arc ai to be a (degenerate) cell in C, in this case ai is also an edge of C lying on the boundary
of the degenerate cell.
We define the dual graph D(C) of a convex decomposition C as the graph whose vertices are the
cells of C, two of which are adjacent if and only if their boundaries intersect. Observe that the
cells incident to any Steiner vertex of δ(C) form a clique in D(C); see Figure 2.
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Figure 2: Left: A piece-wise convex art gallery with 15 vertices. Right: The dual graph of a convex
decomposition of a curvilinear art gallery.

Normal decompositions. To prove our main result, we construct a family of convex decompo-
sitions of A into n + 1 cells. A convex decomposition C of A with n + 1 cells is called normal if
the edges of δ(C) can be directed so that we obtain a directed graph ~δ(C) satisfying the following
three conditions:

1. the vertices of A have out-degree 1,

2. every vertex v of C located in the interior of A has out-degree 1,

3. every vertex of C in the relative interior of an edge ai of A has out-degree 0.

Standard convex decompositions. For a curvilinear art gallery A, we can easily construct a
special normal decomposition in which every edge lies on a directed segment emitted by one of the
vertices. For every vertex vi of A, let Wi be the wedge formed by all rays emitted from vi that
partition the (counterclockwise) angle between tangent lines to ai and ai−1 at vi into two convex
angles. (If this angle is already convex, then Wi is the angular domain between the tangents of
ai−1 and ai, otherwise it is between the tangents of ai and ai−1.)
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Figure 3: A standard convex decomposition (left) and a good decomposition (right) of a curvilinear
art gallery.

Lemma 2. For every vertex vi of A, there is a directed segment ~ri lying in A ∩Wi that connects
vi to another point on the boundary of A, which is not in the relative interior of arc ai or ai+1.

Proof. We construct a directed segment ~ri for every vertex vi. We distinguish two cases. First
suppose that Ci−1 and Ci (as defined in the introduction) intersect in a single point vi. Let h be
a separating line between such that ai−1 \ {vi} and ai \ {vi} lie in two different open halfplanes
bounded by h. It is clear that h partitions the (counterclockwise) angle between tangent lines to
ai and ai−1 at vi into two convex angles. Shoot a ray from vi into the interior of A along h, and
let ~ri be the part of such a ray from vi to the first intersection point with the boundary of A.
Now suppose that Ci−1 and Ci intersect in several points (including vi). If ai−1 or ai is a line
segment, then let ~ri be this segment with a direction from vi to vi−1 or vi. Now suppose that
neither ai−1 nor ai is a line segment. Then either the directed segment −−−→vivi−1 lies in Ci or the
directed segment −−−→vivi+1 lies in Ci−1. Let ~ri be the initial portion of this directed segment from vi
to the first intersection point with the boundary of A. By construction, the endpoint of ~ri cannot
be in the relative interior of arc ai−1 or ai.

We construct a normal decomposition for a given curvilinear art gallery as follows. For i =
0, 1, . . . , n−1, draw a directed line segment starting from vi along a directed segment ~ri as described
in Lemma 2 until it hits the boundary of A or a previously drawn segment. See Figure 3 (left). It is
clear that the n directed segments decompose A into n+1 convex cells (degenerate cells are possible
if ai or ai−1 is a line segment collinear with ~ri). We call any convex decomposition constructed
in this way a standard decomposition of A. Observe that the directions of segments ~ri induce a
direction on all edges of δ(C). Let ~δ(C) denote this directed graph. It is easy to verify now that
every standard decomposition is a normal decomposition.

Cyclic and acyclic cells. Typically every cell in a normal decomposition is adjacent to the
boundary of A. Some cells, however, may be disjoint from the relative interior of every convex
arc ai, i = 0, . . . , n − 1; see Figure 1 (right). Since the out-degree of every vertex of ~δ(C) on the
boundary of such cell is one, the boundary is a directed cycle. We say that a cell in a normal
decomposition is cyclic if it is disjoint from the relative interior of every arc ai, i = 0, . . . , n − 1,
and acyclic otherwise.

Good and bad cells. Let C be a normal convex decomposition of A. A cell c of C is called good
if its boundary contains at least two vertices of A, otherwise c is called bad. A convex decomposition
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of a curvilinear polygon is called good if all of its cells are good; see Figure 3 (right). The following
observation about standard convex decompositions will be useful.

Observation 1. Every cell of a standard convex decomposition of A contains at least one vertex
of A on its boundary.

Proof. Let c be a cell in a standard convex decomposition C. Let i, 0 ≤ i ≤ n − 1, be the largest
index such that the boundary of c contains some portion of the line segment starting from vi. Since
no other edge of c can hit the relative interior of this segment, the segment endpoint vi also lies on
the boundary of c.

We can now classify the components of ~δ(C).

Lemma 3. Let C be a normal decomposition of A. Then every connected component of ~δ(C) is
either a directed tree rooted at a point in the relative interior of an edge of A, or a directed graph
with exactly one directed cycle which bounds a cyclic cell.

Proof. Consider a connected component t of ~δ(C). Since the out-degree of every vertex of ~δ(C)
is at most one, t contains at most one directed cycle. If t contains no cycle, then it is a rooted
tree, and the root has to be a point with out-degree 0; that is, a Steiner point lying in the relative
interior of an edge of A. Now suppose that t contains a cycle, say σ. Note that the interior of σ lies
in the interior of A, since A is simply connected. It remains to show that σ bounds a single cell in
C. Suppose, to the contrary, that at least two cells of C are inside σ. These cells must be separated
by some edges of δ(C) which are not part of σ. None of these edges can start from a vertex of σ,
otherwise the out-degree restriction is not satisfied. Hence, at least one of these edges has to start
from a vertex of A. This, however, is impossible since the interior of σ lies in the interior of A. We
conclude that the interior of σ is a single cell in C.

Special cells for each component of ~δ(C). Let t be a connected component of ~δ(C). We say
that a cell c ∈ C is incident to t if the boundary of c contains at least one edge of t. We specify
some special cells for t. If t contains a cycle σ, then let the cell bounded by σ be special. If t is
a directed tree rooted at some vertex x (lying in the relative interior of some arc ai), then let the
two cells incident to x having an arc of ai on its boundary be special.

3 Constructing a Good Normal Decomposition

In this section we construct a good normal decomposition for a curvilinear art gallery with n ≥ 3
vertices.

Lemma 4. Every curvilinear art gallery with n ≥ 3 vertices has a good normal decomposition.

Proof. Let C be a standard convex decomposition of A. If C is a good decomposition, then our
proof is complete. Otherwise we will deform ~δ(C) continuously into a good decomposition. Our
algorithm successively processes every bad cell of C, deforming its boundary until it contains at
least two vertices of A. During the deformation, we maintain a normal decomposition and good
cells remain good. Specifically, we maintain the following four invariants:

I1 C is a normal decomposition of A.

I2 For every edge e of ~δ(C), there is a vertex v of A such that ~δ(C) contains a directed path of
collinear edges, including e, that either starts from v or ends at v.
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I3 If a cell c ∈ C is incident to a vertex v of A, then c remains incident to v.

I4 If a cell c ∈ C is cyclic, then it remains cyclic.

Note that Invariants I1 and I2 hold for every standard convex decomposition. Invariant I3 implies
that when all bad cells have been processed, we obtain a good decomposition of A.
Consider a bad cell c of C. We process cell c while maintaining invariants I1–I4. We first process
all acyclic bad cells and then process all cyclic bad cells as follows.

Processing an acyclic bad cell. Let c ∈ C be an acyclic bad cell. By Observation 1 and
invariant I3, the boundary of c contains exactly one vertex of A, which we denote by vi. The edges
of ~δ(C) on the boundary of c induce a directed path π in ~δ(C) which starts at vertex vi. Since c is
acyclic, π ends at a point x in the relative interior of an edge a of A adjacent to vi. Without loss of
generality, we may assume that a = ai, and thus vi+1 is the other endpoint of ai. Refer to Fig. 4.

c c

π

x

y

vi vi+1

ai

vi vi+1

aix

y

Figure 4: Stretching segment ~yx.

Observe that some edges along π may be collinear. Let e1, e2, . . . , ek be the maximal directed line
segments that contain collinear edges of π in this order such that e1 starts from vi and ek ends at
x. Let −→yx = ek. We process c as follows. Move point x continuously along ai towards vi+1 and
stretch the directed edge −→yx until one of the following possibilities arises:

1. We have k ≥ 2 and −→yx becomes collinear with ek−1. Then set k := k − 1, recompute y, and
continue moving x (see Figure 5).

2. We have x = vi+1 (see Figure 6, left) or some vertex vr of A appears in the relative interior
of −→yx (see Figure 6, right).

c

π

ej−1

c

π

Figure 5: ~yx becomes collinear with ek−1.

While stretching segment −→yx, the edges of ~δ(C) that hit −→yx from the opposite side of c are contin-
uously shortened, and the edges and Steiner vertices completely swept by −→yx disappear. If at the
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beginning of processing cell c, point x is adjacent to another bad acyclic cell c′, and the outgoing
edge of vi+1 is shortened to a single point when we move x to vi+1, then add a new directed edge
−−−→vi+1vi (which effectively decomposes cell c into two good cells). This completes the description of
the processing of cell c. The process terminates, since at each step, either k is decremented or c
becomes a good cell.
We show next that invariants I1–I4 are maintained. First we show that c remains convex. The first
stopping rule guarantees that c has convex angles at every internal vertex of path π. If y = vi, then
cell c remains convex at vi, since −→yx connects two points of the convex arc ai. It is clear that the
cells on the opposite side of −→yx remain convex. The only case when a cell c′ can disappear is when
c′ is a bad cell incident to vi+1, we move x to vi+1, and the outgoing edge of vi+1 is shortened to a
single point. In this case, however, we add a new outgoing edge at vi+1, and split c into two good
cells, thereby restoring a normal decomposition. Invariant I2 continues to hold for all edges of ~δ(C)
that we do not modify. The edges along −→yx do not satisfy I2 during the continuous motion. At the
end of the process, −→yx contains a vertex of A, and so I2 becomes true for all edges along −→yx. It is
easy to verify that invariants I3 and I4 are maintained.

c

ai

c

ai

Figure 6: ~yx hits a vertex of A.

Also observe that if ~̀ hits vi+1, a cell c′ on the opposite side of −→yx may become cyclic, see Fig-
ure 6 (left).

Processing a cyclic bad cell. Let c be a cyclic bad cell of C. The boundary of c is a directed
cycle π in ~δ(C). Refer to Fig. 7. By Observation 1 and invariant I3, its boundary contains some
vertex vi of A. Some edges along π may be collinear. Let e1, e2, . . . , ek be the maximal directed
line segments that contain collinear edges of π in this order such that e1 starts from vi and ek ends
at vi. Note that k ≥ 3, and let −→yx = ek−2. We process c as follows. By invariant I2, ~δ(C) contains
a directed path through ek−1 and starting or ending at some vertex w of A. Since the directed
path passing through ek−1 bends at the endpoint of ek−1, there is a collinear directed path from w
through ek−1, including point x. Let ~̀ = −→wx ⊂ ~δ(C). Move point x continuously along ~̀ towards
w and stretch the directed edge −→yx until one of the following possibilities arises:

1. We have k ≥ 4 and −→yx becomes collinear with ek−3. Then set k := k − 1, recompute y, and
continue moving x.

2. We have x = w (see Figure 7, right) or some vertex vr of A appears in the relative interior of
−→yx.

This completes the description of the processing of a cyclic cell c. The process terminates, since at
each step, either k is decremented or c becomes a good cell.
We show next that invariants I1–I4 are maintained. The first stopping rule guarantees that c has
convex angles at every vertex of cycle π. It is clear that the cells on the opposite side of −→yx remain
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Figure 7: Deforming a cyclic cell.

convex, and cannot disappear. Invariant I2 continue to hold for all edges of ~δ(C) that we do not
modify. Similar to the processing of acyclic cells, the edges along −→yx do not satisfy I2 during the
continuous motion. At the end of the process, −→yx contains a vertex of A, and so I2 becomes true
for all edges along −→yx. It is easy to verify that invariants I3 and I4 are maintained.

4 The Dual Graphs of Good Normal Decompositions

Let C be a good normal decomposition of A. Since C is fixed, we will refer to ~δ(C) simply as ~δ. Let
t be a connected component of ~δ adjacent to at least three cells of C. Let D(t) be the subgraph of
D(C) induced by the cells of C incident to t. In this section, we prove several important properties
of D(t). We begin with an easy observation.

Observation 2. Every vertex of D(C) has degree at least 2.

Proof. Let c ∈ C be a convex cell. Clearly the degree of every vertex is at least the number of
edges of ~δ on its boundary, and every cell is adjacent to at least one edge of ~δ. Suppose that c is
adjacent to exactly one edge e of ~δ. Since c is good, both endpoints of e are vertices of A. Let
~e = −→uv. Since v has out-degree 1, there is another edge, say e′, that starts from v, and lies between
some cells c1 and c2. Since v is on the boundary of c, it is adjacent to both c1 and c2 in D(C).

The following lemmas are the key to our result.

Lemma 5. D(t) contains a cycle that passes through all acyclic cells adjacent to t.

Proof. Recall that by Lemma 3, t is either a rooted tree or it contains a directed cycle bounding a
cyclic cell of C.
We construct a cycle Ha(t) in D(t) as follows. Walk around the boundary of A starting from
an arbitrary point. We say that the walk encounters a cell c if the walk traverses an arc on the
boundary of c (rather than either passing through only one vertex on the boundary of c or none
at all). Relabel the cells represented by vertices of D(t) along the boundary of A to c1, . . . , ck
in the order in which they are encountered in this walk. The order is well defined: if the walk
encounters a cell ci twice, say at arcs γ1 and γ2, then the portion of the boundary of A between
γ1 and γ2 is separated from t by cell ci, and cannot encounter any other cell adjacent to t. Let
Ha(t) = (c1, . . . , ck). It is clear that consecutive cells in Ha(t) are adjacent in D(t). That is, Ha(t)
is a simple cycle in D(t), which passes through all acyclic cells adjacent to t, as required.

Lemma 6. Let c be a special cell adjacent to t, and assume that c is not adjacent to any other
component of ~δ. Then there is a vertex v(c) of A incident to c such that v(c) is incident to two
more cells c1, c2 ∈ C \ {c} which are consecutive in Ha(t).
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Proof. Suppose first that t is a directed tree (see Figure 8). Since c is special, the root x of t is
on the boundary of c. Suppose that the part of t lying on the boundary of c is the directed path
π from vertex vi to x. Since c is not adjacent to any other component of ~δ, the root x lies on a
convex arc of A incident to vi. However, cell c is good, and so the boundary of c contains at least
one more vertex of A, v(c), which is an internal vertex of path π. Since v(c) is an internal vertex
of π, there are two cells, say c1, c2 ∈ C \ {c}, whose boundaries each contain v(c) and some initial
part of a convex arc incident to v(c). By construction, c1 and c2 are adjacent in the cycle Ha(t).
Now suppose that c is a cyclic cell, bounded by a cycle σ of t. Let v(c) be an arbitrary vertex of A
along σ. Let c1, c2 ∈ C \ {c} be the cells whose boundaries each contain v(c) and some initial part
of a convex arc incident to v(c). Again, c1 and c2 are adjacent in the cycle Ha(t).

c

x

c2 c1

v(c)

c′

v(c′)

Figure 8: Two cells c1, c2, adjacent to c in D(t).

Corollary 7. D(t) is Hamiltonian.

Proof. If t is a directed tree, then Ha(t) is a Hamiltonian cycle of D(t) by Lemma 5. If t has a cycle,
then cycle Ha(t) passes through all acyclic cells, but misses one cyclic cell c. By Lemma 6 there
are two consecutive cells, c1 and c2, in Ha(t) that are both adjacent to c in D(t). By removing the
edge c1c2 from Ha(t) and connecting c with c1 and c2 we obtain a Hamiltonian cycle in D(t).

In the remainder of this paper, we denote by H(t) the Hamiltonian cycle constructed in the proof
of Corollary 7.

Basic cycles. Let γ be a simple cycle in graph D(t). We define region Rγ in the plane as the
union of the cells in γ. Observe that region Rγ is simply connected if and only if the cells in γ do
not enclose any cyclic cell c /∈ γ. We say that γ is a basic cycle of D(t) if Rγ is simply connected;
see Figure 9 (left). In particular, H(t) is a basic cycle, and if t is a tree, then every simple cycle in
D(t) is basic. We denote by D(t, γ) the subgraph of D(t) induced by the vertices of γ.

Lemma 8. Every basic cycle γ in D(t) with k ≥ 3 cells contains three consecutive cells incident
to a vertex of ~δ.

Proof. Label the cells in γ counterclockwise by c0, c1, . . . , ck−1 along the boundary of Rγ . If ci and
cj , i + 1 < j, are adjacent in D(t), then γ′ = (ci, ci+1, . . . , cj) is called a sub-cycle of γ, addition
taken mod k, Figure 9 (right). Every sub-cycle γ′ is a basic cycle, since Rγ′ ⊂ Rγ contains no cell
in its interior. It is enough to show that γ has a sub-cycle γ′ of 3 cells: the common boundary
between the three consecutive cells in γ′ meets, since Rγ is simply connected.
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Let γ′ be the smallest sub-cycle of γ. By relabelling the cells if necessary, we may assume that
γ′ = (c0, c1, . . . , ci). If i = 2, then our proof is complete. Assume that i ≥ 3. The boundary
between c0 and c1 is a (possibly degenerate) line segment s. Since Rγ′ is simply connected, one
endpoint of s must be incident to some other cell cj in γ′. Hence γ′′ = (c0, c1, . . . , cj) is a strictly
smaller sub-cycle of γ, contradicting the minimality of γ′.

γ′
γ

Rγ

c0
c1

c2

c3
c4

c5c6

c1

c4

Rγ′

Figure 9: Left: A basic cycle γ. Right: A sub-cycle γ′ of γ.

Lemma 9. For every basic cycle γ in D(t) with k ≥ 3 cells, graph D(t, γ) has a clique cover of
size bk/2c such that the cells in each clique can be guarded from a single point.

Proof. If γ is an even cycle, then it has a perfect matching of size bk/2c, which is a desired clique
cover, so we are done. Suppose that γ is odd. By Lemma 8, γ contains three consecutive cells
incident to a common vertex of ~δ. This triple together with a perfect matching on the remaining
k − 3 vertices of γ is a desired clique cover of size bk/2c.

5 Constructing a Guard Set

Proof of Theorem 1. Let A be a curvilinear art gallery with n ≥ 3 vertices. Fix a good normal
decomposition C of A. As we noted before, each vertex of ~δ corresponds to a clique in the dual
graph D(C). To show that A can be guarded by at most dn2 e point guards, it is enough to show
that D(C) has a clique cover of size at most dn2 e such that each clique is induced by some vertex
of ~δ, and so the convex cells in each of these cliques can be guarded from a single point. In the
remainder of the proof we describe an algorithm for constructing a clique cover of D(C) having
this property and size at most dn2 e.
We define a graph Γ on the connected components of ~δ. Two connected components t and t′ of
~δ are adjacent in Γ if and only if there is a cell c ∈ C adjacent to both of them; see Figure 10.
Notice that all the components of ~δ incident to a cell c ∈ C induce a clique in Γ. Relabel the
components of ~δ by t1, . . . , tk according to a breadth-first search traversal of Γ. Notice that this
labelling has the property that every tm is adjacent to at most one cell which is adjacent to some
previous component ti with i < m, otherwise A would not be simply connected. Let n(tm) be the
number of cells in D(tm). Note that n(tm) > 1.
We construct a clique cover G of D(C) as follows. Initially, let G = ∅. Our algorithm runs in k
iterations. In iteration m = 1, 2, . . . , k, we process graph D(tm) and compute a set Gm such that
the cliques in ∪mi=1Gi cover all but at most one cells in D(tm). We may leave at most one cell in
D(tm) uncovered provided that it is contained in D(tj) for some j > m (which will be processed
later).
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t1
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t3
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t4 t5

t6

Γ

Figure 10: A good normal decomposition of a curvilinear art gallery, and the corresponding graph
Γ.

Recall that for every tm, at most one cell of D(tm) is contained in a previously processed D(ti),
i < m. This cell may or may not be covered by a clique in Gm. Accordingly, at the beginning of
the m-th iteration two cases may arise:

Case a: No cell of D(tm) has been covered in any previous iteration. We proceed as
follows: If n(tm) = 2, then D(tm) is a clique of size 1 = n(tm)/2. If tm ≥ 3, by Corollary 7 and
Lemma 9, D(tm) has a desired clique cover of size bn(tm)

2 c.

Case b: Exactly one cell of D(tm), say c, was covered in a previous iteration. If
n(tm) = 2, then let Gm = ∅. Then one cell in D(tm) is still uncovered. By Observation 2, the
uncovered cell is adjacent to some other component tj with j > m, which will be processed later.
In the remainder of the proof, we assume n(tm) ≥ 3. Suppose that cell c ∈ D(tm) is already covered.
We will distinguish several subcases. In each subcase, we partition D(tm)\{c} into subgraphs that
are cliques induced by a vertex of ~δ, even paths, basic cycles, and at most one singleton (a cell
adjacent to a component tj , j > m). A perfect matching of an even path of length ` is a clique cover
of size `/2. By Lemma 9, a basic cycle of size ` has a clique cover of size b`/2c. This guarantees
that we obtain a desired clique cover Gm of size at most bn(tm)−1

2 c. We continue with the details.
If n(tm) is odd, then H(tm) \ {c} is an even path. If n(tm) is even, then several sub-cases arise
depending on whether D(tm) has a cyclic cell or not.

Case b1: D(tm) has a cyclic cell c1 ∈ D(tm). Note that c 6= c1, since the cyclic cell is
adjacent to tm only. Since c1 is a good cell, its boundary contains at least two vertices of A. By
Lemma 6, each vertex of A on the boundary of c1 is incident to two consecutive cells in the cycle
Ha(tm). Therefore there are two pairs of consecutive vertices, c2, c3 and c4, c5 in counterclockwise
order along Ha(tm) (with possibly c3 = c4 or c2 = c5) such that {c1, c2, c3} and {c1, c4, c5} are
cliques, each of which can be guarded from a vertex of A. See Figure 11.
Partition the cycle Ha(tm) into paths [c3, c4] and [c5, c2]. Suppose without loss of generality that
c ∈ [c5, c2]. Clearly [c5, c2] \ {c} is the union of two (possibly empty) paths, which we denote by p2

and p5 such that c2 ∈ p2 and c5 ∈ p5 respectively. Note that either p2 or p2 \ {c2} is even; denote
this path by p′2. Similarly either p5 or p5 \ {c5} is even, and denoted by p′5. Since c1 is adjacent to
c2, c3, c4, c5, the graph D(tm) \ ({c} ∪ p′2 ∪ p′5) has a spanning cycle, that contains c1, and so it is a
basic cycle.
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c5

c2

c1

c4

c

c3
p2

p5

Ha(tm)

Figure 11: [c5, c2] \ {c} is the union of paths p2 and p5.

Case b2: D(tm) has no cyclic cell. Let c1 and c2 be the special cells adjacent to tm. We
distinguish three subcases depending on whether c1 and c2 are adjacent to any other component of
~δ or we can apply Lemma 6:

Case b2.1: Both c1 and c2 are adjacent to some other components of ~δ. Recall that
H(tm) is a Hamiltonian cycle of D(tm) in which c1 and c2 are consecutive cells. Since n(tm) is
even, H(tm) \ {c} is an odd path. First suppose that c is a special cell of tm, say c = c1. Then
H(tm) \ {c1, c2} is an even path, and we leave c2 uncovered. Now suppose that c is not a special
cell of tm. Then H(tm) \ {c, c1} or H(tm) \ {c, c2} is the union of two even paths. Suppose without
loss of generality that this happens for H(tm) \ {c, c1}, and we leave c1 uncovered.

Case b2.2: Exactly one of c1 or c2 is adjacent to some other component of ~δ. Assume
without loss of generality that c1 is adjacent to no other component of ~δ. By Lemma 6, there are
two consecutive cells, c3 and c4, along H(tm) such that {c1, c3, c4} is a clique which can be guarded
from a single point. The edge c1c3 splits the cycle H(tm) into two cycles, which we denote by say
H1 and H2 respectively such that H1 ∩H2 = c1c3. We may assume without loss of generality that
c4 ∈ H1 and c2 ∈ H2; see Figure 12. Now we have:

H1 H2

c4

c1

c H1 H2

c4 c3

c1 c2

c

c3

c2

p2

p1

p2

p3

a) b)

Figure 12: Illustrations for Case b2.2.1 and Case b2.2.2.

Case b2.2.1: c ∈ H1. Then the cells of D(tm) \ {c, c2} lie on two paths: p1 = H1 \ {c} and
p2 = H2 \ {c1, c2, c3}. See Figure 12(a). We leave c2 uncovered. If p1 is even, then p2 is even, too,
and we have a desired partition of D(tm) \ {c}. If p1 is odd, then p2 is odd, too. By construction,
edge c4c1 is a triangular chord of p1. We obtain an even path p′1 from p1 by replacing edges c1c3
and c3c4 with the edge c1c4. We obtain an even path p′2 from p2 by appending c3 to it.
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Case b2.2.2: c ∈ H2. Then H2 \ {c, c2} is the union of two (possibly empty) paths, which we
denote by p2 and p3 such that c2 ∈ p2 and c3 ∈ p3 respectively; see Figure 12(b). Note that either
p2 or p2 \ {c2} is even; denote this path by p′2. Similarly either p3 or p3 \ {c3} is even, and denoted
by p′3. Since c1 is adjacent to c3 and c4, the graph H1 \ p′3 has a spanning cycle H ′1 which is a basic
cycle. The even paths p′2 and p′3, basic cycle H ′1, and possibly leaving cell c2 as a singleton, we have
a desired partition of D(tm) \ {c}.

Case b2.3: Neither c1 nor c2 is adjacent to any other component of ~δ. By Lemma 6,
there are two consecutive cells, c3 and c4, along H(tm) such that {c2, c3, c4} is a clique which can be
guarded from a single vertex v(c2). Similarly, there are two consecutive cells, c5 and c6, along H(tm)
such that {c1, c5, c6} is a clique which can be guarded from a single vertex v(c1). We distinguish
two subcases depending on whether the vertices v(c1) and v(c2) are distinct:

H1 H2

a)
p1 c4c5

c3c6

c1 c2

c

H1

H2

b)
c4

c5 c3

c6

c1 c2

c

p5
p4

Figure 13: Illustration for Case b2.3.1.

Case b2.3.1: v(c1) 6= v(c2). Suppose without loss of generality that c3, c4, c5, c6 are in coun-
terclockwise order, with possibly c4 = c5; see Figure 13. Let p1 = [c4, c5] along H(tm). Let
H1 = [c5, c1] ∪ c1c5 and H2 = [c2, c4] ∪ c4c2 be two interior disjoint cycles of D(tm); see Figure 13.

Suppose first that c ∈ H1 (we can argue analogously if c ∈ H2). Let p2 = H1 \ {c} be a path. We
partition D(tm) \ {c} into two even paths and a basic cycle. If p2 is even, then set p1 = p1 \ {c3},
otherwise set p2 = (p2 \ {c3}) ∪ c1c4. If p1 is even, then set H2 = H2 \ {c5} ∪ c2c6, otherwise set
p1 = p1 \ {c5}. We have partitioned D(tm) \ {c} into the even paths p1 and p2 and basic cycle H2.
Suppose next that c ∈ p1. Now p1 \ {c} is the union of two paths, say p4 and p5, such that c4 ∈ p4

and c5 ∈ p5. As in the above, depending on the parity of p4 and p5, we can choose to remove c4
from p4 or from H2, and similarly remove c5 from p5 or H1, obtaining two even paths and two basic
cycles.

Case b2.3.2: v(c1) = v(c2). This implies that c3 = c5 and c4 = c6, and c1, c2, c3, c4 induce a
4-clique, whose vertices can be guarded from vertex v(c1) = v(c2). Denote the 4-clique by q.
Let H1 = [c4, c1]∪c1c4 and H2 = [c2, c3]∪c3c2 be two cycles of D(tm); see Figure 14a. Assume that
c ∈ H1 (we can argue analogously if c ∈ H2). Let p1 = H1 \{c}. If p1 is even, then p1 and H2 is the
desired partition of D(tm) \ {c}. So suppose that p1 is odd. Notice that H(tm) \ {c, c1, c2, c3, c4} is
the union of three paths, two of which are even and the remaining path is is odd. Note that one
endpoint of each path is adjacent to a cell in clique q. We can append one cell of q to the odd path,
and obtain a partition of D(tm) \ {c} into three even paths and a triangle contained in q.
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H1 H2

c3c4

c1 c2

H1 H2

c3c4

c1 c2

c

a) b)

Figure 14: Illustration for Case b2.3.2.

For m = 1, 2, . . . , k, we have computed a set Gm such that G = ∪km=1Gm is a clique cover of D(C).
We have |Gm| ≤ bn(tm)

2 c for every m. Recall that for every component tm, at most one adjacent cell
could be adjacent to another a previous component ti, i < m. It follows that |G| ≤ bn+1

2 c = dn2 e.

6 A Simpler Proof for Vertex Guards

Karavelas, Tóth and Tsigaridas [11] proved that b2n3 c vertex guards are always sufficient and
sometimes necessary to guard a piece-wise convex curvilinear polygon with n ≥ 2 vertices. We
finish this paper by providing a simpler proof of their result.

Theorem 10 ([11]). Let A be a piece-wise convex curvilinear art gallery with n ≥ 2 vertices. Then
b2n3 c vertex guards are always sufficient and sometimes necessary to guard A.

Proof. Let A be a curvilinear art gallery with n ≥ 2 vertices. Label the vertices by v0, . . . , vn−1

along the boundary of A, addition taken mod n. For any two consecutive vertices vi and vi+1,
let Pi be the shortest path from vi to vi+1 contained in A. Refer to Figure 15. Every path Pi is
a simple polygonal chain. Since the boundary of A consists of convex arcs, every vertex of Pi is
a vertex of A. Since Pi and the convex arc ai have the same endpoints, vi and vi+1, Pi ∪ ai is a
simple closed curve. Let Ri denote the simply connected region in the interior of Pi ∪ ai. We call
Ri the room of ai. Since Pi is a shortest path between vi and vi+1 in A, all internal vertices of Pi
are reflex vertices of region Ri.
Since the paths Pi connect consecutive vertices of A, they are pairwise non-crossing, and the rooms
Ri are interior disjoint. The paths Pi, i = 0, 1, . . . , n−1, jointly decompose A into simply connected
regions, see Figure 15 (right). The regions adjacent to the boundary of A are rooms. We call any
other region a polygonal region; these are simple polygons bounded by some edges of a path Pi.
Let V be the set of n vertices of A. Consider the decomposition of A into n rooms and possibly
some polygonal regions. Triangulate every polygonal region and let E denote the set of edges of
all paths Pi, and all edges of the triangulations of the polygonal regions. We define a dual graph T
of graph (V,E) as follows. The vertices of T are the triangles in the triangulation of the polygonal
regions. Two nodes are adjacent if and only if the corresponding triangles share an edge; that is,
if each edge of the dual graph of T corresponds to an edge e ∈ E.
It is not difficult to see that T is a forest. Every edge e ∈ E decomposes A into two curvilinear art
galleries, and so the removal of the dual edge of e disconnects one of the connected components of
T . It follows that graph (V,E) has a proper 3-vertex coloring. Fix an arbitrary 3-vertex coloring
of (V,E); see Figure 15 (left). The total size of the two smallest color classes is at most b2n3 c.
We show that guards at these vertices jointly monitor the entire art gallery. It is clear that every
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Figure 15: Left: Shortest paths between consecutive vertices of a curvilinear art gallery A. Right:
A triangulation of the polygonal regions of A and a 3-coloring of graph (V,E)

triangle in the triangulation of a polygonal region is guarded by vertices in each color class. We
show next that every room is guarded by vertices in any two color classes.
We say that a point p ∈ A sees all of an edge e ∈ E if the triangle spanned by e and p is contained
in A. The following claim implies that every point in a room sees both endpoints of some edge in
E.

Claim. Let Ri be a room of of A, and let p ∈ Ri. Then p sees all of some edge e in path Pi.

u0

u1

uk

S1

Si

Sk−1

ui−1 ui

Figure 16: The decomposition of room R0 into convex cells.

If Pi has exactly one edge e, then the room Ri is convex, and p sees all of e. Suppose that Pi has
at least two edges. Suppose that Pi = (vi = u0, u1, . . . , uk = vi+1). For j = 1, . . . , k − 1, extend
edge uj−1uj beyond its endpoint uj until it hits the convex arc ai. The extensions decompose Ri
into k − 1 convex cells, each adjacent to a unique edge of Pi. If p lies in the interior of a convex
cell, then p sees all of the edge of Pi adjacent to the cell. If p lies on the extension of edge uj−1uj
for some j = 1, 2, . . . , k − 1, then p sees all of edge ujuj+1. This completes the proof of the Claim,
and thus the proof of the theorem.

We conclude by constructing a family of curvilinear art galleries with n vertices, where n ≡ 0
mod 3, that requires at least 2n

3 vertex guards. A similar construction has been presented in [11].
The construction is based on a pattern formed by three consecutive convex arcs depicted in Fig-
ure 17 (left). Let Q be a regular n

3 -gon, replace every edge of Q by a rotated copy of the three
convex arcs as shown in Figure 17 (right). For each triple of consecutive arcs, we can construct
three interior-disjoint regions such that each region is seen from only two vertices of the pattern. It
now follows that the three regions require at least two vertex guards. Over n

3 copies of this pattern,
n interior disjoint regions require 2n

3 vertex guards.
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l1

l2
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v2

v3r1
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Figure 17: Left: Basic pattern for the lower bound construction. Right: A curvilinear art gallery
with 27 vertices that requires 18 vertex guards.
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