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Abstract

We study a problem of dissecting a rectangle into a minimum number of pieces
which may be reassembled into a square. The dissection is made using only rectilinear
glass-cuts, i.e., vertical or horizontal straight-line cuts separating pieces into two.

1 Introduction

A glass-cut of a rectangle is a cut by a straight-line segment that separates the rectangle
into two pieces. A rectilinear glass-cut is a glass-cut that is either vertical or horizontal. A
rectilinear glass-cut dissection of a rectangle R to a rectangle R′ is a sequence of rectilinear
glass-cuts on R such that the resulting pieces can be reassembled to form the rectangle R′.
Clearly, a sequence of n rectlinear glass-cuts produces n + 1 pieces (see Figure 1).

Figure 1: Three dissections of a rectangle: the leftmost is a rectilinear glass-cut while the
other two are not.

We address the problem of finding rectilinear glass-cut dissections with minimum num-
ber of pieces of a rectangle R into a square S of the same area. Because of scaling, without
loss of generality we will suppose that S is a unit square and R is a rectangle of width r
and height 1

r
(i.e., a r × 1

r
rectangle). It is known that the problem has no solution for an
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irrational value of r (see Stillwell [5]). Therefore we suppose that r = m
n
, where m and n

are relatively prime positive integers with m > n. For the purpose of ease of analysis we
will scale the problem to the equivalent version of dissection of an m2 × n2 rectangle into
an mn×mn square, and the glass-cuts are at integer positions. Our dissection algorithm
in Section 2 cuts such a rectangle into a number of pieces never exceeding m + 1 which
may be reassembled to form the square.

Dissections of unit area rectangles into a unit square are always possible if the cuts are
not necessarily rectilinear. Namely, a unit area rectangle of dimensions a × b can always
be dissected to a unit square using at most da/be+ 2 pieces. This beautiful result, due to
Montucla, is described in [2]. We illustrate with an example.

Example 1.1 The rectangle of dimensions 25×9 can be dissected to a square of dimensions
15× 15 using four pieces as depicted in Figure 2.
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Figure 2: Montucla’s dissection of a 25× 9 rectangle into a 15× 15 square using the four
pieces A, B, C,D.

A simple rectilinear glass-cut dissection of an m
n
× n

m
rectangle to a unit square can be

obtained as follows. Dissect the rectangle into n rectangles of dimension m
n
× 1

m
. Lay these

n rectangles into a single rectangle of width 1/m and height m. Dissect this new rectangle
into m rectangles of width 1/m and height 1. These m + n− 1 rectangular pieces can now
be assembled to form a unit square. We illustrate with an example.

Example 1.2 There is a rectilinear glass-cut dissection of a 25×9 rectangle into a 15×15
square with seven rectangular pieces. The pieces are illustrated in Figure 3.

2 A New Dissection Algorithm

Definition 2.1 Let p(m, n) be the minimum number of pieces in dissecting the m2 × n2

rectangle into the mn×mn square. For convenience we also define p(m, 0) = 0.

2



→ →

A

B

C

D

E

F

G

→ A

B

C

D

E

F
G

Figure 3: Dissection of a 25× 9 rectangle into a 15× 15 square. The dissection uses seven
rectangular pieces A, B, C,D, E.F.G that can be assembled to form the unit square.

It is easy to prove that p(m, 1) = m. In the sequel we assume that n > 1. First we prove
the following lemma.

Lemma 2.1 If m > n then

p(m, n) ≤ 2 ·
⌊m

n

⌋
+ p(n, m mod n).

Proof. We start with a rectangle R of dimensions m2 × n2. The dissection is in two
steps.
Step 1: In the first step we dissect the original rectangle R with vertical glass-cuts
(see Figure 4). Each piece is a rectangle with dimensions (mn) × n2, which gives rise

· · ·

...
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Figure 4: Step 1 in the dissection of an m2 × n2 rectangle into an mn×mn square.

to bm2/(mn)c = bm/nc such rectangles. It also leaves two “surplus” rectangles to be
dissected: one, denoted by A, with dimensions (mn)× (mn−bm/ncn2) (this is part of the
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m2 × n2 rectangle) and one, denoted by B, with dimensions (m2 − bm/ncmn) × n2 (this
is part of the mn×mn square).
Step 2: In the second step we rotate the rectangle B 90 degrees counterclockwise, The
resulting rectangles have dimensions mn × rn and n2 × rm, where r = m − bm/ncn, We
now perform the following dissection (see Figure 5). We dissect A into bmn/n2c = bm/nc

· · ·

...
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Figure 5: Step 2 of the dissection. We rotate the rectangle B and dissect. The remaining
rectangle R′ has dimensions n2 × r2.

rectangles each of dimension n2 × rn. The remaining rectangle in A is in fact an rn× rn
square. These pieces are placed in B one on top of the other. It is easy to see that the
remaining rectangle has dimensions n2 × r2. If R′ is the rectangle with dimensions n2 × r2

we see that the original dissection problem of converting the rectangle R into a square has
been transformed into the problem of converting the rectangle R′ into a square at an extra
cost of 2bm/nc rectangles. This completes the proof of Lemma 2.1.

Lemma 2.1 gives an algorithm for computing a dissection of the m2×n2 rectangl into an
mn×mn square. Consider the sequence of integers generated by the Euclidean algorithm:
r0 = m, r1 = n and

r0 = q0r1 + r2 0 ≤ r2 < r1

r1 = q1r2 + r3 0 ≤ r3 < r2
...

...
ri = qiri+1 + ri+2 0 ≤ ri+2 < ri+1
...

...
rk = qkrk+1 rk+2 = 0,

where rk+1 = gcd(m, n) = 1 and k ∈ O(log n). If we iterate Lemma 2.1 k times then we
obtain a dissection consisting of

p(m, n) ≤ 2
k−1∑
i=0

⌊
ri

ri+1

⌋
+ p(rk, rk+1)
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rectangular pieces. In computing the last term p(rk, rk+1) note that by the Euclidean
algorithm rk = qkrk+1 and hence we have to dissect a rectangle of dimensions (qkrk+1)

2 ×
r2
k+1 into a square of dimensions qkrk+1 × qkrk+1. It is now easy to see that this last

dissection can be accomplished in exactly qk = rk/rk+1 = rk rectangular pieces each of
dimensions qkrk+1 × rk+1. To sum up we have proved the following theorem.

Theorem 2.1 An m
n
× n

m
rectangle can be dissected into a unit square using only rectilinear

glass-cuts, and the number of pieces does not exceed

2
k−1∑
i=0

⌊
ri

ri+1

⌋
+ rk, (1)

where r0 = m > r1 = n > · · · > rk+1 = gcd(m, n) = 1 is the sequence of remainders
produced by the computation of gcd(m, n) using the Euclidean algorithm.

We illustrate the previous method with an example.

Example 2.1 There is a five piece rectilinear glass-cut dissection of the 25 × 9 rectangle
into a 15× 15 square. The dissection is depicted in Figures 6 and 7.
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Figure 6: Dissection of a 25× 9 rectangle into a 15× 15 square using our algorithm. There
are five rectangular pieces in the dissection of dimensions 15× 9, 9× 6, 6× 4, 3× 2, 3× 2,
respectively.

Using Formula 1, we can also prove the following upper bound on the number of pieces.

Theorem 2.2 The number of pieces to dissect an m
n
× n

m
rectangle to unit square does not

exceed m + 1.
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Figure 7: The square of dimensions 15 × 15 resulting from the dissection by assembling
the five rectangles of dimensions 15× 9, 9× 6, 6× 4, 3× 2, 3× 2.

Proof. We show that for n > 1 the number of pieces obtained by the previous algorithm
never exceeds m + 1. If n = 2 then it is not hard to see that p(m, 2) ≤ 2bm/2c +
p(2, m mod 2) ≤ m. Hence without loss of generality we may assume n ≥ 3.

We now prove by induction on m that p(m, n) ≤ m + 1. If n ≤ m/3 then using the
induction hypothesis and since n ≥ 3,

p(m, n) ≤ 2bm/nc+ p(n, m mod n)
≤ 2(m/n) + n + 1
≤ 2(m/3) + m/3 + 1
= m + 1.

Hence without loss of generality we may assume n > m/3, which also implies bm/nc = 2.
If also n ≤ m− 4 then from the induction hypothesis we have

p(m, n) ≤ 2bm/nc+ p(n, m mod n)
≤ 2 · 2 + n + 1
≤ 4 + m− 4 + 1
= m + 1.

Hence, without loss of generality we may assume that n ≥ m− 3. If m > 6 then m/n < 2
and bm/nc = 1. Hence, if also n ≤ m− 2 then

p(m, n) ≤ 2bm/nc+ p(n, m mod n)
≤ 2 · 1 + n + 1
≤ 2 + m− 2 + 1
= m + 1.

This reduces to the case where m > 6 and n ≥ m − 1. In the case where m = n + 1
we can prove directly that p(m, m − 1) ≤ m + 1. So we only need to consider the cases
6 ≥ m > n ≥ 3. Since gcd(m, n) = 1 this leaves only the cases (6.5), (5, 4), (5, 3), (4, 3). In
view of Example 2.1 we have that p(5, 3) ≤ 5. This and the previous observations complete
the proof of the theorem.
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3 Open Problem

We do not know whether or not our algorithm gives the optimal number of pieces. In
fact no non-trivial lower bound is known which is valid for all possible rectilinear (and
otherwise) dissections. For additional problems see also [1].
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