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Abstract. We study the minimum number g(m,n) (respectively, p(m, n))
of pieces needed to dissect a regular m-gon into a regular n-gon of the
same area using glass-cuts (respectively, polygonal cuts). First we study
regular polygon-square dissections and show that dn/2e − 2 ≤ g(4, n) ≤
n
2

+ o(n) and dn/4e ≤ g(n, 4) ≤ n
2

+ o(n) hold for sufficiently large n.
We also consider polygonal cuts, i.e., the minimum number p(4, n) of
pieces needed to dissect a square into a regular n-gon of the same area
using polygonal cuts and show that dn/4e ≤ p(4, n) ≤ n

2
+o(n), holds for

sufficiently large n. We also consider regular polygon-polygon dissections
and obtain similar bounds for g(m,n) and p(m, n).
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1 Introduction

An old theorem from the first half of the nineteenth century by Lowry, Wallace,
Bolyai and Gerwien asserts that any simple polygon can be dissected into a finite
number of pieces and reassembled to form any other simple polygon of the same
area (see [3]). It is easy to see that the dissection of one polygon into another
depends on the shape of the polygons. In fact, for the dissection of a triangle
to a square of the same area, the number of pieces depends on the length of
the longest side of the triangle, e.g. see [3][page 222] and [1]. In particular, this
raises the question of how the number of pieces in a dissection of one polygon into
another depends on the number of vertices of the polygons. More specifically, we
have the following interesting question:

Problem 1. What is the minimum number of pieces for dissecting a regular poly-
gon into any other regular polygon of the same area?

A special case of this problem is when one of the regular polygons is of a
simple type, such as a square.

Problem 2. What is the minimum number of pieces for dissecting a square into
a regular polygon of the same area?



This second problem is simpler but also contains most of the essential obser-
vations in our study and will become the focus of attention of this paper. As a
consequence of our analysis we will also obtain results concerning Problem 1.

It is interesting how many people (amateurs and mathematicians alike) have
been occupied with this problem or its variations. Dissections are implicit in
Hilbert’s third problem: “Show that two tetrahedra having the same altitude
and base area have the same volume without resort to the method of limits” [5].

Many attractive dissections have been the source of recreational activity and
have been published in the entertainment sections of various publications. Of
particular interest is the beautiful book [3] by G. Frederickson which also includes
many such dissections.

1.1 Preliminaries

In the following we consider two types of dissections: glass-cuts and polygonal
cuts. A glass-cut dissection cuts a simple polygon into two pieces using a straight
line cut. A polygonal cut dissection cuts a simple polygon into two pieces along
a polygonal line. Clearly, a glass-cut dissection is also a polygonal dissection,
but not vice-versa as shown by the polygonal cut of the equilateral triangle
depicted in Figure 9. A glass-cut dissection of an object A into another object B
of the same area is reversible if there is a glass-cut dissection of B into A using
exactly the same pieces. We note that all polygonal dissections are reversible,
but this is not true for glass-cuts, as shown in Figure 9. By piece we understand
a simple connected polygon whose interior is nonempty. The table in Figure 1
gives references for the best dissections of n-gons to a square of the same area for
n ≤ 10 and n = 12. Also note that for n = 3, 5, 6, the dissections are glass-cuts,
while the remaining dissections are not.

n # pieces Author page # Glass-cut

3 4 Dudeney 137 yes

5 6 Brodie 120 yes

6 5 Busschop 118 yes

7 7 Theobald 129 no

8 5 Bennett 151 no

9 9 Theobald 132 no

10 7 Theobald 134 no

12 6 Lindgren 107 no

Fig. 1. Best-known dissection of a regular n-gon to a square of the same area with
page references from Frederickson’s book ([3]). The last column indicates whether or
not the dissection is also a glass-cut.

It is interesting to note that all these dissections are derived from appropriate
polygon tesselations by superimposing a tesselation of squares. As such, these



techniques are not applicable to the study of our Problems 1 and 2. (See also
[4].)

A fundamental result that will be used frequently in the remainder of this
paper is Montucla’s dissection (see Figure 2) for converting a rectangle R to any
other rectangle R′ of the same area (see also page 222 of [3]).

A
A

B

B

R

R'

Fig. 2. Montucla’s dissection of the rectangle R′ of the same area as described in [3].

By width of a rectangle we understand the length of its shorter side. Given
two rectangles of the same area and widths w(R), w(R′), respectively, the width
ratio w(R, R′) is dw(R)/w(R′)e, if w(R′) ≤ w(R), and dw(R′)/w(R)e, otherwise.
Formally, we have the following result.

Theorem 1. (Montucla, [3][page 222]) Let R, R′ be two rectangles of the same
area and width ratio w(R, R′). Then R can be dissected into R′ with glass-cuts
using at most w(R, R′) + 2 pieces. In addition, if R is already dissected into p
pieces, then by overlaying this dissection to the previous one we can dissect R′

using at most p(w(R, R′)+2) pieces. Moreover, if the original dissection of R is
with glass-cuts, then so is the resulting dissection of R′. ut

It is interesting to see that when the width ratio of the given rectangles is
constant, the number of pieces of the resulting dissection is a constant multiple
of the number of pieces of the original dissection.



1.2 Results of the paper

A mathematical reformulation of the problems proposed above concerns the
asymptotic behavior of the functions p, g which are defined as follows. For inte-
gers m, n, let p(m, n) (respectively, g(m, n)) be the minimum number of pieces
needed to dissect a regular m-gon into a regular n-gon using polygonal (respec-
tively, glass-) cuts. We note that the following properties are immediate from
the definitions

p(m, n) = p(n, m),
p(m, n) ≤ g(m, n).

In this paper we study these two functions in detail and prove the following
theorems.

Theorem 2. The following bounds hold for the functions p and g for all suffi-
ciently large non-negative integers m < n:

max{d(n−m)/2e, dn/3e} ≤ g(m, n) ≤ m
2 + n

2 + o(n),
d(n −m)/4 + 1e ≤ p(m, n) ≤ m

2 + n
2 + o(n),

where o(n) is a function of n such that limn→∞
o(n)

n = 0. ut

Theorem 2 will be obtained as a corollary of the following theorem.

Theorem 3. The following bounds hold for the functions p and g for all suffi-
ciently large non-negative integers n:

dn/4e ≤ p(n, 4) ≤ n
2 + o(n),

dn/4e ≤ g(n, 4) ≤ n
2 + o(n),

dn/2e − 2 ≤ g(4, n) ≤ n
2 + o(n),

where o(n) is a function of n such that limn→∞
o(n)

n = 0. ut

Details of the proofs as well as the dissection algorithms leading to the upper
bounds will be given in Sections 2 and 3. The lower bounds are given in Section
4 and some open problems are proposed in Section 5.

2 Polygon-Square Dissections

This section provides new dissections of regular polygons into squares and es-
timates their asymptotic number of pieces. All the dissections below concern
dissections of a regular n-gon into a square of the same area, which for sim-
plicity is assumed to be equal to 1. The main theorem of this section is the
following.

Theorem 4. Let k = k(n) be a function of n such that limn→∞
k(n)

n = 0.
Any regular n-gon can be dissected to a square of the same area using at most
n
2 + O(n

k log k) glass-cuts. Conversely, this same dissection can be reversed to
form a dissection of the square to a regular n-gon of the same area using only
glass-cuts.



The main ideas of the proof of this theorem are the following.

1. We dissect the regular n-gon into k-diamonds.
2. We dissect the k-diamonds into layers.
3. We assemble the layers into rectangles of varying widths.
4. We assemble the rectangles into a single rectangle.
5. We dissect the rectangle into a square.

In the next section we give the details of this construction.

2.1 Diamond dissections

The unit of dissection is a “circular” sector of the regular n-gon, called a k-
diamond, and which is defined as follows. Pick an integer k. Consider the center
of the regular n-gon (which is also the center of the circumscribing n-gon). Each
sector is delimited by k adjacent sides of the n-gon and the two radii on the
left-most and right-most vertex of this sequence of polygon sides. Depending on
the parity of k there are two types of k-diamonds, shown in the two illustrations
in Figure 3.

Fig. 3. A 6-diamond and a 7-diamond and their dissections into 4 layers.

Each sector is in turn dissected into bk/2c+ 1 layers.
For any vertex A of the regular n-gon, consider the diameter passing through

A, and let A′ be the point of intersection of this diameter with the perimeter of
the n-gon. The first glass-cut is determined by the diameter from any arbitrary
vertex, say A, of the n-gon. Observe that if n is even then A′ is also a vertex of
the n-gon, while if n is odd A′ is the midpoint of a side of the n-gon, say S. In



the case that n is odd we dissect the isosceles triangle delimited by S and the
two equal radii adjacent to this side. If n is even then A′ is also a vertex of the
n-gon, in which case no extra dissection is needed.

We dissect the n-gon into bn/kc non-overlapping sectors. If k does not divide
n then a sector remains, consisting of n − bn/kck sides of the n-gon. It can be
easily shown using Montucla’s dissection, that this extra sector can be dissected
into the “right” shape by adding only an extra overhead of O(k) pieces. Details
of the proof of this are left to the reader.

Without loss of generality we may assume that k is a fixed integer which is
even and a divisor of n. First we dissect the n-gon into n/k k-diamonds. Then
we dissect each k-diamond into k

2 + 1 pieces as depicted in Figure 3. From top
to bottom, the top layer is a triangle, the next k/2 − 1 layers are trapezoids
and the last (k/2 + 1)-layer a triangle. It is clear that each layer consists of n/k
pieces and therefore the total number of pieces is equal to n

2 + n
k . We number

the layers 0, 1, . . . , k
2 from top to bottom.

Straightforward calculations show that for a regular n-gon of area 1, the
radius a(n) of the circumscribing circle and side b(n) of the n-gon are given by
the following formulas:

a(n) =
1√
π
·
√

2π/n

sin(2π/n)
, b(n) =

2

n
·
√

π ·
√

2π/n

sin(2π/n)
· sin(π/n)

π/n
. (1)

Also, b(n) is the length of the base, and a(n) the length of the equal sides of
the 1-diamond. The height of the 1-diamond is equal to

h(n) =
1√
π
· π/n

sin(π/n)
·
√

sin(2π/n)

2π/n
. (2)

Now we consider a trapezoid in the i-th layer and compute its dimensions.
The height of the i-th trapezoid is equal to

hi(n) = 2a(n) sin(π/n) sin((2i + 1)π/n), (3)

where a(n) is the radius of the circle circumscribed in the regular n-gon and
given in equation (1). Also the same formula gives the length b(n) of the non-
horizontal side of the trapezoid. Let `i(n) be the length of the longest base of
the i-th trapezoid. Elementary calculations show that

`i(n) = 4a(n) sin(π/n)
i

∑

j=0

cos((2j + 1)π/n). (4)

It is also clear that the shortest side is equal to `i−1(n).

2.2 Assembling the layers into rectangles

Next we convert the trapezoids of the i-th layer into a rectangle. To accomplish
this, we reflect half the trapezoids with respect to the x-axis and attach them



two at a time as depicted in Figure 4 in order to form a parallelogram. Finally
we cut a triangle from the leftmost end and attach it to the rightmost end of
this parallelogram in order to form a rectangle.

.....

Fig. 4. The i-th layer of trapezoids. A right-angle triangle is dissected from the leftmost
trapezoid and attached to the rightmost trapezoid.

The height of this rectangle is equal to hi(n) and its total length (if we let
si(n) be the length of the projection of the side of the i-th trapezoid on its large
base) is equal to

Li(n) = n
k (`i(n)− si(n))

= n
k 2a(n) sin(π/n)

(

2
∑i

j=0 cos((2i + 1)π/n) − cos((2i + 1)π/n)
)

= 2
√

π
k (2i + 1)Ai(n),

(5)

where Ai(n) is a function of n that converges to 1 as n goes to infinity and which
is defined from the formula for a(n), and by approximating the sum

2
i

∑

j=0

cos((2i + 1)π/n)− cos((2i + 1)π/n)

by integrals (see [2][page 50]) and using the well-known limit formula

lim
x→0

sin x

x
= 1.

In addition, using equation (3) we observe that the sum of heights of these
k/2 rectangles is equal to

∑k/2−1
i=0 hi(n) = 2a(n) sin(π/n)

∑k/2−1
i=0 sin((2i + 1)π/n)

≤ 2a(n) sin(π/n)
∑k/2−1

i=0
(2i+1)π

n

≈
√

π
n2 k2.

(6)

At the same time we are interested in having the sum of the heights of these
rectangles asymptotically small. In view of equation (6) the sum of the heights
of these rectangles can be made arbitrarily small.

Each triangle of the k/2+1-layer is isosceles with equal sides of length a(n), as
given by Equation 1, and base of length `k/2(n), as given by Equation 4. Moreover

its height is equal to a(n) cos(πn/k). Since by assumption limn→∞
k(n)

n = 0 it
follows that the rectangle formed from the triangles of the k/2 + 1-layer has
width approximately equal to

√
π and height approximately equal to 1/

√
π.



2.3 Forming a single rectangle

Now we have a sequence of rectangles R0, R1, . . . , Rk/2 of varying lengths and
heights which we will “normalize” to the same length. As indicated in equation

(5), for i = 0, . . . , k/2 − 1, Ri has height hi(n) and length 2
√

π
k (2i + 1), while

Rk/2 has dimensions approximately equal to (1/
√

π) ×√
π. We now proceed to

dissect the first k/2 rectangles to the length of rectangle Rk/2, which we denote
by `. Recall that ` is approximately equal to

√
π.

For each i = 0, . . . , k/2 − 1, we dissect the rectangle Ri into 2(2i + 1) sub-
rectangles of the same height hi(n) and length approximately equal to `

k . The

first 2(2i + 1) − 1 of these subrectangles have length exactly equal to `
k . How-

ever, the last subrectangle will have length sufficiently close and approximately
equal to `

k . We therefore use Montucla’s dissection as in Theorem 1 to convert

it to a subrectangle of length exactly `
k at the cost of doubling the number of

its trapezoidal pieces. The other subrectangles, however, remain unaffected. The
total number of pieces of the i-th layer after this transformation is equal to

n

k
+

n

2(2i + 1)k
.

Adding these for i = 0, 1, . . . , k/2− 1, we obtain a total number of

k/2−1
∑

i=0

(

n

k
+

n

2(2i + 1)k

)

=
n

2
+

n

k

k/2−1
∑

i=0

1

2(2i + 1)
=

n

2
+ O

(n

k
log k

)

(7)

pieces plus the n/k pieces of the bottom k/2 + 1-th layer.
Note that we have a total of

k/2−1
∑

i=0

2(2i + 1) = 2





k

2
+ 2

k/2−1
∑

i=0

i



 =
k2

2

subrectangles each of length exactly `
k . Next we sort the subrectangles by height

from the smallest to the largest and stack them up in order to form a rectangle
of length

√
π. Let the subrectangles in sorted order from smallest to largest be

S1, S2, . . . , Sk2/2. The stacking algorithm is as follows. Create a bucket B of
length

√
π consisting of k subbuckets B0, B1, . . . , Bk each of width

√
π/k (see

Figure 5).
Now place subrectangles Si, Si+k, Si+2k, . . . , Si+(k/2−1)k in subbucket Bi in

this order from bottom-up, left-to-right, for i = 1, 2, . . . , k.
The resulting subrectangles in the bucket do not yet form a rectangle. How-

ever, we claim that by using a total of at most k cuts on subrectangles and a
total of at most O(n

k log k) new pieces we can convert it to a rectangle. To prove
this we argue as follows. Let the heights of the corresponding subbuckets be
y1, y2, . . . , yk. The height of the rectangle we are looking for must be equal to
the average of these heights, i.e.,

a =
y1 + y2 + · · · + yk

k
.



Fig. 5. The arrangements of subrectangles S0, S1, . . . , Sk2/2 in the subbuckets
B1, B2, . . . , Bk. The dotted line depicts a cut.

Let the height of the tallest subbucket be yi. Dissect from the rectangle at the
top of this subbucket a subrectangle of height exactly yi − a. It is easy to see
that there is a j 6= i such that yj + yi − a < a. Therefore we can insert this
subrectangle at the top of subbucket Bj . Moreover, subbucket Bi now has the
required height, namely a. Now we remove the subbucket Bi and consider the
remaining subbuckets

B1, B2, . . . , Bi−1, Bi+1, . . . , Bk.

It is also easily seen that the average of the heights of these remaining subbuckets
is exactly a. Therefore our claim follows using induction on k. The total number
of pieces thus added is easily shown to be at most O(n

k log k). Moreover, using
the proof that led to equation (7) it can be shown that any cut starting from
the top side of the rectangle and ending at the bottom side of this rectangle will
intersect at most O(n

k log k) new pieces (see Figure 5).

2.4 Dissecting the rectangle into a square

We are now in a position to provide the final dissection. The construction of
Section 2.3 gives rise to a rectangle consisting of two subrectangles; the rectangle
of triangles and the rectangle of trapezoids (see Figure 6).

The two rectangles are dissected simultaneously to form a square using Mon-
tucla’s dissection. This is depicted in Figure 7.

The argument of Section 2.3 shows that the extra overhead number of pieces
is O(n

k log k). This completes the proof of Theorem 4. ut

Proof of Theorem 3. Let ε be a positive real < 1. Let c > 0 be the constant of
Theorem 4. Choose k = n1−ε. Then we define

o(n) =
cn log k

k
= c(1 − ε)nε log n

and apply Theorem 4. This proves the upper bound stated in Theorem 3. ut



Fig. 6. The rectangle of triangles and trapezoids.

Fig. 7. Dissecting the two rectangles to a square. The leftmost picture depicts Montu-
cla’s dissection and the rightmost picture the result.



3 Polygon-Polygon Dissections

An immediate extension of the previous results is obtained through overlaying.

Theorem 5. Let k = k(m), ` = `(n) be functions of m, n, respectively, such
that

lim
m→∞

k(m)

m
= lim

n→∞

`(n)

n
= 0.

Any regular m-gon can be dissected to a regular n-gon of the same area using at
most

m

2
+

n

2
+ O

(

mn

k(m)`(n)
(log k(m) + log `(n))

)

glass-cuts.

Fig. 8. We overlay the two squares arising from the dissections of the two regular
polygons into squares. The rectangles of trapezoids are mapped into the thin strips
and to distinguish them one is depicted with the shaded region.

Proof Consider the dissections of the m-gon and n-gon into a square. We
rotate one of the two squares 180 degrees and overlay it over the other as depicted
in Figure 8. We can estimate the total number of pieces. The m-gon (respectively,
n-gon) dissection consists of m

k (respectively, n
` ) triangles and m

2 (respectively,
n
2 ) trapezoidal pieces. Each of the O(m/k) lines of the triangles intersects the
trapezoidal pieces to generate a total of at most

m

2
+ O

(m

k

n

`
log `

)

pieces. Similarly, each of the O(n/`) lines of the triangles intersects the trape-
zoidal pieces to generate a total of at most

n

2
+ O

(n

`

m

k
log k

)



pieces. Moreover, the intersection of the triangle lines generates a total of at
most

O
(m

k

n

`

)

pieces. Adding these estimates we obtain the desired result. ut

The upper bounds stated in Theorem 2 are now obtained exactly as before.
The lower bounds will be discussed in the next section.

4 Lower bounds

Note that glass-cuts are also polygonal cuts. Therefore lower bounds for polygo-
nal cuts are also lower bounds for glass-cuts. An interesting observation is that a
glass-cut dissection of a first polygon into a second is not necessarily a glass-cut
dissection of the second polygon into the first (see Figure 9). This means that
unlike the function p(m, n), the function g(m, n) is not necessarily symmetric in
the variables m and n.

Fig. 9. An example of a dissection of an equilateral triangle into a quadrangle which
is a glass-cut for the quadrangle but not a glass-cut for the triangle.

In this section we study lower bounds for polygonal cuts as well as glass-cuts.
Section 4.1 is devoted to glass-cuts while Section 4.2 treats polygonal cuts.

4.1 Glass-Cuts

Theorem 6. Any glass-cut dissection of a square into a convex n-gon of the
same area requires at least dn/2e − 2 pieces.

Proof Consider a glass-cut dissection of the square into a convex n-gon consist-
ing of k pieces. A glass-cut divides a given piece into two pieces, both of which
are convex polygons. The sum of the angles of these two pieces exceeds the sum
of the angles of the original piece by 2π, π or 0 depending on whether or not



the two endpoints of the glass-cut segment intersect zero, one, or two vertices
respectively, of the original convex piece. It follows that the sum of the angles
of the pieces cannot exceed 2(k + 1)π. At the same time these k pieces can be
reassembled to form the convex n-gon. Since the sum of the angles of the convex
n-gon is exactly (n− 2)π it follows that

(n− 2)π ≤ 2(k + 1)π.

This completes the proof of the theorem. ut

Theorem 6 is valid for a glass-cut dissection of a square to a simple polygon
and can also be generalized to give an d(n−m)/2e lower bound on the number
of pieces for a glass-cut dissection of a convex m-gon to a convex n-gon, for
m < n. If n − m is small the lower bound is weak. For this reason we also give
the following theorem.

Theorem 7. Any glass-cut dissection of a regular m-gon into a regular n-gon
of the same area, m 6= n, requires at least dn/3e pieces.

Proof Consider a glass-cut dissection of the regular m-gon into a regular n-
gon. Let the number of glass-cuts be equal to k. Each glass-cut dissects one
convex piece into two and produces four new angles. The total number of pieces
produced is k+1. Let V be the resulting set of vertices. Each of the n vertices of
the n-gon must be among these vertices V . In addition, some of these n angles
are composite (in the sense that it takes at least two of the angles produced by
the dissections to form such an angle) and some are solid (i.e., not dissected by
any line of a glass-cut). Let s be the number of solid angles. If we define by w(v)
the number of angles adjacent to vertex v then we have that w(v) ≥ 2, for all
vertices v ∈ V which are not vertices corresponding to solid angles. The above
discussion implies that

4(k + 1) ≥
∑

v∈V

w(v) ≥ 2(n− s) + s.

This gives an n/2− s/4 lower bound on the number of pieces.
Now we estimate the number s of solid angles. Let si and ci be the number

of solid and composite vertices produced by the i-th cut. Since m 6= n it is clear
that

si + ci = 4, for all i.

Moreover, since m 6= n and the dissections are with glass-cuts, we have that
si ≤ 2, for all i. It follows that

s =
k

∑

i=1

si ≤ 2k.

Consequently,

k ≥ n

2
− s

4
≥ n

2
− k

2
,

which implies the desired lower bound and concludes the proof of Theorem 7. ut



4.2 Polygonal Cuts

Both Theorems 6 and 7 are valid only for a dissection of a square to a regular
n-gon. In the reverse direction, i.e., dissection of an n-gon to a square, we can
only prove the more general (but weaker) lower bound of Theorem 8. Also note
the importance of convexity of the given polygons. The lower bound is not valid
if even one of the given polygons is not convex; it is easy to find a simple (non-
convex) polygon which can be dissected into two pieces that can be assembled
to form a square.

Theorem 8. Any polygonal dissection of a convex n-gon into a square of the
same area requires at least dn/4e pieces.

Proof For any simple polygon let c(P ) and r(P ) be the number of convex and
reflex vertices of P , respectively. Also let δ(P ) = c(P )− r(P ) be the convex-to-
reflex vertex difference of the polygon P . The main observation is based on the
following lemma.

Lemma 1. If a polygonal cut dissects a simple polygon P into two simple poly-
gon pieces Q and R then

δ(P ) + 2 ≤ δ(Q) + δ(R) ≤ δ(P ) + 6.

u u
u

(a)                                         (b)                                                          (c)

Fig. 10. Three types of cuts in a simple polygon through vertex u. In cases (a) and
(b) two convex vertices are created, while in case (c) at most one reflex vertex may be
created.

Proof of Lemma 1. To see this, observe that a polygonal cut at u creates
either two convex vertices or one convex and one reflex vertex (see Figure 10).

However, for the vertices produced by the polygonal cut, with the possible
exception of u, v, reflex vertices of Q match with convex vertices of R, and vice-
versa; reflex vertices of R match with convex vertices of Q (see Figure 11).

Therefore a polygonal cut creates either the same number of new convex and
reflex vertices or a surplus of either two or four new extra vertices. Hence, it is
easy to derive the desired upper and lower bounds. This completes the proof of
Lemma 1. ut



u

vQ

R

Fig. 11. Polygon P is dissected into two simple polygons Q and R with a polygonal
line cut through u, v.

For convenience, we use the symbol P 2〈 Q + R to denote that P is decom-
posed into pieces Q, R via a polygonal dissection. Now consider a polygonal dis-
section of the n-gon into k pieces P1, P2, . . . , Pk. These pieces can be reassembled
to form the square. Without loss of generality we may assume that the following
sequence forms the square: define P ′1 2〈 P1 and by induction P ′i = P ′i−1 + Pi, for
i ≤ k, where the last piece P ′k is the square. It follows by induction on j ≥ 0,
using Lemma 1, that

k
∑

i=1

δ(Pi) ≤ 6j + δ(P ′j+1) +

k
∑

i=j+2

δ(Pi).

Indeed, assuming the inequality is valid for j, we can extend it to j + 1 by using
Lemma 1, i.e.,

δ(P ′j+1) + δ(Pj+2) ≤ δ(P ′j+2) + 4.

Since P ′k is the square, we have that δ(P ′k) = 4. Hence for j = k − 1 we obtain
that

k
∑

i=1

δ(Pi) ≤ 6k.

At the same time, these same pieces can be reassembled to form the given
convex n-gon. Without loss of generality we may assume that there is a permu-
tation, say Q1, Q2, . . . , Qk, of the above pieces such that the following sequence
forms the n-gon: define Q′1 2〈 Q1 and by induction Q′i = Q′i−1 + Qi, for i ≤ k,
where the last piece Q′k is the convex n-gon. The dissection must be such that
at least the n convex vertices of the convex polygon are created. In particular,



using Lemma 1 again, and arguing as before we obtain that

2k + n = 2k + δ(Q′k) ≤ 2k +

k
∑

i=1

δ(Qi) = 2k +

k
∑

i=1

δ(Pi) ≤ 6k.

This concludes the proof of Theorem 8. ut

We observe that the lower bounds stated in Theorem 3 are an immediate
consequence of Theorems 7 and 8. The lower bounds of Theorem 2 are also
obtained by adapting the proofs of Theorems 6, 7 and 8. Details are left to the
reader.

5 Conclusions and Open Problems

We have investigated the problem of optimal dissections from a regular polygon
to another polygon of the same area. We showed that asymptotically the optimal
number of pieces in a glass-cut dissection of a square into a regular n-gon is
exactly n

2 +o(n). Aside from tightening the previously obtained bounds it would
be interesting to examine the answers to the following questions:

1. What is the asymptotic behavior of g(n, 4), and more generally g(m, n)?
2. Are polygonal cuts more powerful than glass-cuts, i.e. is g(m, n) asymptoti-

cally bigger than p(m, n)?
3. Is g(m, n) asymptotically a symmetric function, i.e. is |g(m, n)− g(n, m)| =

o(m) + o(n)?

It would also be interesting to look at dissections of other classes of polygons
(e.g., star polygons).
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