
Some Problems in Distributed Computational

Geometry

(Extended Abstract)

Sergio Rajsbaum∗ Jorge Urrutia†

February 14, 2004

Abstract

A geometric network is a distributed network where each proces-
sor is identified by two numbers, representing the coordinates of the
point in the plane where the processor is located. The edges of the
network correspond to straight line segments such that no two of them
intersect. In this paper we introduce the study of distributed comput-
ing in geometric networks. We study several computational geometry
problems from the distributed computing point of view, such as finding
convex hulls of geometric networks and identification of the external
face. In particular, we obtain a O(n log2 n) message complexity al-
gorithm to find the convex hull of a planar geometric graph, and a
O(n logn) algorithm to identify the external face of a geometric graph.
We also prove that the message complexity of leader election in an
asynchronous geometric ring of n processors is Ω(n logn).

1 Introduction

A geometric network is a distributed network in which each processor has
a fixed location on the plane, and its edges are represented by non-crossing
straight line segments. There are many papers that investigate the com-
plexity of various specific distributed problems. Of special interest is the
message complexity of an algorithm, which is the total number of messages

∗Contact Author. Instituto de Matemáticas, UNAM, Ciudad Universitaria, D.F. 04510,
México. email: rajsbaum@servidor.unam.mx.

†Supported by NSERC, Canada. SITE, University of Ottawa, Ottawa ON Canada

1

sent in the worst case during any execution of the algorithm. It turns out
that the complexity of solving a problem depends critically on various spe-
cific, and sometimes subtle network assumptions, such as, for example, the
degree of asynchrony, or the type of failures. The knowledge that proces-
sors have about the network can dramatically affect the complexity of a
problem; for example, knowledge about its topology (e.g. ring, hypercube),
sense of orientation, the number of processors, etc. Detailed treatments and
references can be found in textbooks such as [3, 5]. In the asynchronous,
failure-free setting, it is known that Θ(m+ n log n) messages are necessary
and sufficient to elect a leader in an arbitrary network of n processors and
m links. The same result holds for rings. In this paper we initiate the
study of distributed algorithms on geometric networks, and investigate the
impact of geometric information on the complexity of the leader election
problem. We also obtain distributed algorithms to calculate the convex hull
of a geometric graph, as well as for the identification of internal and external
faces of a geometric network. We concentrate on the message complexity of
asynchronous, failure-free, uniform (processors do not know the size of the
network) algorithms. We assume each processor in the network knows the
coordinates of a point that represents its position in the plane, and that no
two processors are at the same location.

Our motivation to study distributed computational geometry, arises in
part from the fact that in real-life networks, computers (the processors of
a distributed network) are located at some specific place. Thus computer
networks can be modeled as geometric networks. It is also interesting to
note that, some of the best network topology maps used by Internet Service
Providers and Internet Backbone Networks, such as TEN-34, EuropaNET,
Eunet, Qwest Nationwide Network, etc. can be modeled as planar or almost
planar graphs; see [1].

From a theorethical point of view, the development of algorithms to
calculate fundamentals in computational geometry, such as convex hulls and
the faces of a planar map, are basic problems to be addressed in this context.

Results

In Section 3 we prove a lower bound of Ω(n log n) on the message complexity
of leader election in geometric rings. Since there are O(n log n) algorithms
for rings (not geometrical), this bound is tight, and the geometric informa-
tion does not help to reduce the message complexity of this problem.

In Section 4, we present a lower bound of Ω(n log n) on the message

2

complexity of the external face problem in geometric rings. Then we show
that the external face problem can be solved in O(n log n) messages in a
general geometric network. We prove this by showing that if there is already
a leader in a geometric network, it takes O(n) messages to solve the external
face problem.

Both of our lower bounds hold even if the network lies on a grid; that is,
the positions of the processors in the plane are integers and each line segment
joining two processors is horizontal or vertical. It will follow from our proof
that our result holds even for rings located on grids of area O(n log n).

We remark that our lower bound for leader election holds even if the
processors know the external face of the ring. Therefore, although both
problems have message complexity of Θ(n log n), in a sense, leader election
is strictly harder than external face; if there is a leader, O(n) messages are
needed to find the external face, but if the external face is known, Ω(n log n)
messages are needed to elect a leader.

Finally, in Section 5, for the convex hull problem in geometric networks,
we give a O(n log2 n) message algorithm which sends only a constant number
of identifiers in each message. Notice that once the convex hull has been
solved, it takes only O(n) messages to elect a leader, and hence also to find
the external face.

Summarizing, we prove that geometric leader election is strictly harder
than external face and that convex hull is at least as hard as geometric
leader election.

In Section 6 we discuss some issues related to the geometric model and
some open questions.

2 Preliminaries

We consider standard asynchronous, failure-free networks where the mes-
sages take a finite but arbitrary time to traverse a link [3, 5].

The message complexity of a distributed algorithm is the worst-case num-
ber of messages sent by the algorithm. For the upper bounds we assume that
each message contains a constant number of processor identifiers, otherwise
any distributed problem could be solved by first electing a leader, which in
turn would gather the topology of the network and solve the problem lo-
cally. In our algorithms, each message will have two parts; a constant-length
list of processor identifiers, followed by O(log n) bits. The lower bounds we
present hold even if the messages are of unbounded size.

3

A geometric network is a distributed network in which each processor
p knows its position on the plane determined by an ordered pair (px, py)
of numbers called the identifiers of p. No two processors have the same
identifiers. The communication links are straight lines, and no two lines
intersect, other than perhaps at their end points.

We will use the partial order “≺” defined on the processors of our net-
works as follows. Given two processors, p and q,

p ≺ q if py < qy or else if py = qy and px < qx.

Notice that under ≺ any two processors are comparable, and thus there
is a unique largest processor with respect to ≺.

3 Leader Election In Geometric Networks

We start by considering the case of a geometric convex ring. Then we deal
with arbitrary rings. A ring is called convex if its processors are located at
the vertices of a convex polygon. We now show that in convex rings, electing
a leader can be done using at most 2n messages.

Consider the order ≺ defined above on the processors of a convex ring
C. Let p be a processor of C, and let q and r be its neighbours. Since the
ring is convex, p is the maximal processor with respect to ≺ if and only if
q ≺ p, and r ≺ p. Our election algorithm proceeds as follows: A processor
either wakes up spontaneously, or upon receiving a message from any of its
neighbours. When a processor p wakes up, it sends a message to its two
neighbors, say q, r, asking them for their identifiers. Once p obtains this
information, it elects itself as leader iff p ≺ q and p ≺ r. It is easy to see
that the total number of messages used by this algorithm is 2n.

At this point, it is a natural question to ask if the additional informa-
tion provided in geometric rings can be used to elect a leader in better than
O(n log n) messages. As mentioned in the introduction, a leader can be
elected in a ring, and hence also in a geometric ring with, O(n log n) mes-
sages. We now show that any asynchronous algorithm to elect a leader in
geometric rings has an execution where Ω(n log n) messages are sent. The
argument incorporates geometry into the classical proof of Burns [2] (see
also [3]). Thus, as in [2], we assume uniform algorithms that have to work
for any ring size n. For the proof, we require that at the end of a leader
election algorithm every processor knows the id (x, y) of the processor p
with largest (w.r.t. ≺) id, so that p is considered the leader. Notice that

4

this lower bound also implies that Ω(n log n) messages are needed to elect
any leader, with the requirement that only a single processor needs to know
the leader; if there exists an algorithm sending fewer messages, once this
algorithm terminates, the leader can send a message around the ring to find
out the coordinates of the largest processor, and then send another message
around the ring to distribute this information; this adds no more than 2n
messages to the message complexity of the original algorithm.

Consider any leader election algorithm A. The idea of Burns’ proof is to
consider executions of A that send many messages without communicating
with part of the ring. Take a segment (roughly half) of a ring, containing
k processors, with endpoints p, q, with open edges e1, e2 connecting the
segment to the rest of the ring. Prove, by induction, that there is an open
execution for the segment in which Θ(k log k) messages are sent, but no
message is delivered along e1, e2. Then, consider an execution that consists
of the open executions for each half of the ring, and show how to force an
additional linear number of messages to be sent, in an open execution.

Let C be a geometric ring. We say that C is an orthogonal ring if
the edges of C are horizontal or vertical line segments, and its processors
have integer coordinates. Given an orthogonal ring C, let R(C) be the
smallest orthogonal rectangle containing it, and let n(C), h(C), and w(C)
respectively be the number of processors in C, the height, and the the width
of R(C). We also call h(C), and w(C) the height and width of C

In order to make this argument work, for each point (i, j) on the plane
with integer coordinates, we construct recursively a family of orthogonal
rings Fk(i, j), k ≥ 0, which satisfy the following conditions:

1. For every pair of integers (i, j), all the elements of Fk(i, j) have the
same width and height, denoted by wk and hk respectively. Moreover,
if C ∈ Fk(i, j) and C ′ ∈ Fk(k, l) then n(C) = n(C ′) = nk.

2. For each pair of elements C and C ′ of Fk(i, j), R(C) = R(C ′).

3. Each orthogonal ring C in Fk(i, j) has exactly one edge in the bottom
and top sides of R(C), called the top and bottom edges of C. These
are the potential open edges (in Burns’ proof) of the ring.

4. nk, wk, and hk satisfy the following equations:

• nk = 2nk−1 + 8, with n0 = 4.

• hk = hk + 4 with h0 = 1.

5

• wk = 2wk−1 + 3 with w0 = 1.

For every pair of integers (i, j), let C0(i, j) be the unit square, with four
processors in its corners, and let the top and bottom edges of C0(i, j) be the
the top and bottom sides of C0(i, j) respectively. Let F0(i, j) = {C0(i, j)}.

Having constructed Fk−1(i, j) for every (i, j), we now show how to con-
struct Fk(i, j); i, j ∈ I.

Consider the family of rings Fk(i, j + 2) and Fk(i+wk−1 +3, j +2), and
let C1 ∈ Fk(i, j + 2) and C2 ∈ Fk(i+wk−1 + 3, j + 2).

Using C1 and C2 we obtain four elements in Fk(i, j) called C1,2(top, top),
C1,2(top, bottom), C1,2(bottom, top), and C1,2(bottom, bottom) as follows:

First remove the top and bottom edges of C1 and C2 respectively, and
join the endpoints of these edges by two non-intersecting paths of length
5 as shown in Figure 1(a). C1 and C2 are not drawn, only their boxes,
represented by dotted squares. Let C1,2(top, bottom) be the resulting ring.
The edges e1 and e2 are the top and bottom edges C1,2(top, bottom).

To obtain C1,2(top, top) we now remove the top edges of C1, and C2 and
join their end-vertices by two non-intersecting paths, one of length 3, and
the second of length 7 as shown in Figure 1(b).1

C1,2(bottom, bottom) and C1,2(bottom, top) are handled in a symmetric
way. Clearly nk, wk, and hk satisfy the equations in item 4 above. It also
follows that the solutions of these equations yield:

• nk = 3 · 2k+2 − 8.

• hk = 4k + 1.

• wk = 2k+2 − 3.

Thus the area occupied by an element of any Fk(i, j) is hk ·wk, which is
Θ(nk log nk).

We now prove:

Theorem 3.1 For any election algorithm A there is an element C ∈ Fk(i, j)
such that to elect a leader in C, algorithm A sends Ω(n log n) messages,
where n = nk = 3 · 2k+2 − 8.

1The actual shape of the paths connecting the top and/or bottom edges of C1 and C2

are irrelevant, other than to keep the sizes of the boxes enclosing the elements of Fk(i, j)
uniform, and that each element of Fk(i, j) has a unique top and bottom edge.

6

To prove Theorem 3.1 we will need some preliminary results. Given a
ring C and an edge e in it, we call an execution of an election algorithm A on
C open on e if it is obtained by running A on C, but with the introduction
of an infinite delay on e; that is, any message sent along e will never reach
its destination. Notice that under these conditions, A may not terminate;
nevertheless at some point in time all activity on C − e will stop, either
because a leader has been elected, or because A is waiting for the messages
sent along e to arrive at their destination.

We now prove the following result:

Lemma 3.2 Let A be a leader election algorithm. For every k ≥ 0 and
integers i, j there exists a ring C ∈ Fk(i, j) with an execution of A open either
at the top or the bottom edge of C such that A sends at least Θ(nk log(nk)
messages.

Proof: Our result holds for small values of k. Suppose then that it holds
for k − 1. By induction, there are rings C1 and C2 in Fk−1(i, j + 2) and
Fk−1(i+wk−1 +3, j+2) for which A has an open execution on each of them
(open at their bottom or top edge) that sends at least Θ(nk−1 log(nk−1))
messages. Assume w.l.o.g that these executions of A are open at the top
edges of C1 and C2. We now show that there is an execution of A open at
the top or bottom edge of C1,2(top, top) that sends at least Θ(nk log(nk))
messages.

Consider first an execution of A on C1,2(top, top) in which we introduce
an infinite delay in all the edges along the paths connecting C1 with C2.
Notice that this will result in executions of A on C1 and C2 in which their
top edges are open, and thus in the worst case, A will be forced to send at
least f(k−1) messages in each of them, where f(k−1) is Θ(nk−1 log(nk−1)).

Suppose now that we remove the delay on all the edges on the path of
C1,2(top, top) containing its top edge, and connecting C1 with C2. If this
forces A to send an extra

nk−1

2 messages, then the total number of messages
sent by A is 2f(k − 1) plus O(nk−1) which proves our result. Let Stop be
the set of vertices which send or receive a message.

In a similar way, suppose that we remove the delay assumption on the
edges on the path C1,2(top, top) containing its bottom edge. Define Sbottom

in a similar way to Stop, and assume again that A is not forced to send
nk−1

2
extra messages.

This implies that Stop and Sbottom do not intersect, and thus by simul-
taneously removing the delay on all the edges on the paths connecting C1

and C2, A could enter a deadlock failing to elect a leader!

7

Theorem 3.1 follows.

4 The External Face Problem

A geometric network induces a partitioning of the plane into a set of polygo-
nal regions called faces. One of these faces is unbounded, and will be referred
to as the external face. In this section, we study the external face problem:
each processor should find out whether it is a vertex of the external face,
and if so, which of the faces containing it is the external one. We start by
proving a Ω(n log n) message complexity lower bound for geometric rings,
and then present a matching upper bound for general geometric networks.

The lower bound proof is analogous to the lower bound proof in the
previous section for leader election, except that instead of using the con-
struction shown in Figure 1, we use that shown in Figure 2. The idea is
that the rings C1 ∈ Fk−1(i, j+2) and C2 ∈ Fk−1(i+wk−1 +3, j+2) used to
generate rings in Fk(i, j) cannot identify the external face of the obtained
rings before a message has passed along the (top or bottom) open edge.

If we connect the two rings as in Figure 1(a), then the internal face of
C1 becomes part of the internal face of the new ring, while in Figure 2(b) it
becomes part of the external face. Thus we have:

Theorem 4.1 The message complexity of the external face problem in ge-
ometric rings is Ω(n log n).

We now proceed to the upper bound.

Theorem 4.2 Once a leader has been elected, the external face problem can
be solved in geometric networks using O(n) messages. Thus the message
complexity of this problem is O(n log n).

Proof: We recall that in any distributed network, the leader can determine
a spanning tree T using O(E) messages (where E is the number of edges
in the network), and since the geometric network is planar, it has a linear
number of edges. Next, using T , the leader can determine the point with
the largest id, p, with at most 2n messages; sending a wave down the tree
to request this information and a wave up the tree to collect it. Notice
that p is in the external face of the geometric network. The leader notifies
p that it has the largest id, and asks it to finish the determination of the
external face. Observe that p can determine which of the faces incident to

8

it is the external one simply by collecting the coordinates of its neighbours.
Processor p then sends a message along one of its links on the external face,
notifying the neighbor at the other end of this link that it is also in the
external face, and which of the faces incident at this vertex is the external
one.

Each time a processor q is notified that it belongs to the external face,
by receiving a message along a link e in the external face, it forwards this
message along the other link e′ incident to q in the external face. When p
gets this message back, it notifies all the processors that the external face has
been determined. This can all be done using a linear number of messages.

5 The Convex Hull Problem

The convex hull of a geometric network is the smallest convex polygon that
encloses the network. In this section, we present a distributed algorithm to
solve the convex hull problem: each processor has to find out whether it is
a vertex of the convex hull, and if so, the identities of its neighbors in the
convex hull, in both the clockwise and counterclockwise direction.

We first observe that using the results of the previous section, we can
reduce the problem of finding the convex hull of a geometric network to that
of finding the convex hull of its external face in O(n log n) messages. Thus,
in the rest of this section we concentrate in the problem of finding convex
hulls of geometric rings. We prove that the convex hull of a geometric ring
C can be found using O(n log2 n) messages.

Our algorithm proceeds as follows:

1. In the first iteration, we elect a leader in C.

2. The leader then sends a message along C relabeling its vertices {v1, . . . , vn}
such that v1 is the leader.

3. In a recursive way, calculate the convex hulls of {v1, . . . , vbn

2
c} and

{vbn

2
c, . . . , vn}. Merge these hulls to obtain Conv(C).

We now proceed to show that merging the convex hulls of {v1, . . . , vbn

2
c}

and {vbn

2
c, . . . , vn} can be done in O(n log n). This will prove our result.

It is important to observe that in what follows, instead of using all of
C, we use only the edges in the path obtained from C by deleting the edge
connecting v1 to vn. This is important since in the recursive iterations of

9

our algorithm, we are calculating the union of convex hulls of subpaths of
C. Thus, rather than considering C as a ring, we will consider it as the
path connecting v1 to vn. Several preliminary results will be needed. Let
P1 and P2 be the polygons determined by the convex hulls of {v1, . . . , vbn

2
c}

and {vbn

2
c, . . . , vn} respectively. The following result, given without proof,

is an easy consequence of the simplicity of C; see Figure 3.

Lemma 5.1 The boundaries of P1 and P2 intersect along a line segment,
or in at most two points. Moreover, if the boundaries of P1 and P2 do not
intersect, then P1 ⊂ P2 or P2 ⊂ P1.

This is important since due to this result to calculate the convex hull of
P1 ∪P2, all we need to do is to decide if P1 ⊂ P2 or P2 ⊂ P1, and if not find
exactly two common supporting lines of P1 and P2.

We now prove the next result, which we call The ray shooting lemma

Lemma 5.2 (Ray-Shooting) Let vi ∈ {v1, . . . vn}, and let L be any line
through vi. Then using a linear number of messages vi can find, if any, the
points at which L intersects P1 and P2.

Proof: To prove this, notice that all vi has to do is to send a message along
C containing the equation of L. Each time a processor that corresponds to a
vertex of P1 (resp. P2) receives this message, it verifies whether L intersects
the line segments that join it to its neighbours in P1 (resp. P2). If an
intersection is detected, a message is sent back to vi informing it that an
intersection was detected, along with the coordinates of the intersection
point.

Observe that in Lemma 5.2, we can easily substitute a line segment or
a ray for L by sending the coordinates of the endpoints of a line segment or
the initial point and the direction of a ray along C, instead of the equation
of L.

The next result follows from Lemma 5.1:

Corollary 5.3 Let vi be any vertex of P1 (resp. P2), and L any line through
vi. Then we can determine whether L intersects P1 (resp. P2) using a linear
number of messages.

We now prove:

10

Lemma 5.4 We can detect if P1 ⊂ P2 or P2 ⊂ P1 using a linear number of
messages.

Proof: Let i be the largest index such that vi is a vertex of P1. Suppose
that vj and vk are the vertices adjacent to vi on the boundary of P1. Two
cases arise:

1. i < bn
2 c

2. i = bn
2 c

In the first case, all we have to verify is whether the path connecting
vbn

2
c to vn intersects either of the line segments connecting vi to vj and vk.

If it does, then P1 is not a subset of P2, otherwise P1 ⊂ P2. In the second
case, we verify first whether vbn

2
c+1 belongs to the interior of P1. If it does,

we then verify whether the path vbn

2
c+1 to vn intersects either of the line

segments connecting vi to vj and vk. Testing if the path from vbn

2
c to vn

intersects the line segments connecting vi to vj and vk can be accomplished
in a linear number of messages due to the observation at the end of the proof
of Lemma 5.2.

Observe that vbn

2
c belongs to both P1 and P2. Let L be the horizontal

line through vbn

2
c, and let I1, I2 be the intervals at which L intersects P1

and P2.
Two cases arise:

1. I1 and I2 overlap.

2. I1 ⊂ I2 or I2 ⊂ I1.

For the first case, assume that the left endpoint of I1 is to the left of I2,
as in Figure 4.

Let P
′

1 and P
′

2 be the polygons obtained by intersecting P1 and P2 with
the halfplane above L, and let us relabel their vertices by {u1, . . . , ur} and
{w1, . . . , ws} respectively such that u1 and ur are the left and right endpoints
of I1, and w1 and ws are the left and right endpoints of I2, and let up and
wt be vertices of P

′

1 and P
′

2 such that the line segment joining them is an
edge of the convex hull of P

′

1 ∪ P
′

2. See Figure 4.
We now prove:

Lemma 5.5 up and wt can be found using at most O(n lnn) messages.

11

Proof: We show how to perform a binary search on {u1, . . . , ur} to find
up; wt can be found in a similar way. Take the mid-vertex vb r

2
c, and consider

ray R through vb r

2
c starting at vb r

2
c−1; see Figure 5. If R intersects P

′

2, then
ur ∈ {u1, . . . , vb r

2
c−1}, else ur ∈ {vb r

2
c, . . . , vr}. Iterating this procedure, we

can find ur in a logarithmic number of iterations. By Lemma 5.2, detecting
whether R intersects P

′

2 can be done using a linear number of messages. Our
result follows.

In a similar way we can find, using O(n log n) messages, the missing edge
e of the convex hull of the union of the polygons Q

′

1 and Q
′

2 obtained by
intersecting P1 and P2 with the plane below L. If the lines generated by
the edges upwt, and e are supporting lines of P1 and P2, then these are the
edges we are seeking to calculate Conv(P1 ∪P2). It could happen, however,
that one of them, say upwt, is not an edge of Conv(P1 ∪ P2). This could
happen if wt is exactly ws. See Figure 5. The reader may easily verify that
performing a binary search on the chains u1, . . . , up, and ws−1, . . . , wm, we
can find the missing edge in Conv(P1 ∪ P2), where wm is the end-vertex of
e in Q

′

2; see Figure 6.
We now show how to solve the case when I1 ⊂ I2 or I2 ⊂ I1.
Suppose without loss of generality that I1 ⊂ I2. Let vr and vs be the

vertices of P1 with the smallest and the largest y coordinates, and consider
the line L′ that passes through them. Then L′ intersects P1 and P2 at two
overlapping intervals I

′

1 and I
′

2. Substituting L for L′ and proceeding as
before, we obtain Conv(P1 ∪ P2).

The last result that we need to prove is how to calculate the relative order
of the processors in the convex hull of C. This order is used to perform the
search procedure described in Lemma 5.5.

We now show how to relabel the vertices on the convex hull of C as
{u1, . . . , um} such that ui is adjacent to ui+1 and ui−1, addition taken mod
n.

Recall that at the end of the execution of the steps described above, each
vertex vi ∈ C knows if it belongs to the convex hull of C, and if it does, it
also knows the identities, say vl(i) and vr(i), of its left and right neighbours
in the convex hull of C. To start the relabeling process the leader, v1, sends
a message along C to find m, the number vertices of Conv(C). Once v1

knows r, it initializes this relabeling by sending a message containing r that
will be forwarded to v2, v3, etc. until it reaches the first vertex vi of C in
Conv(C). Now vi becomes u1. Notice that at this point, vi knows that its
left neighbour in Conv(C), vl(i) is u2, and vr(i) is um. Processor vi forwards

12

this information along C until it reaches either of vl(i) or vr(i). Suppose it
reaches vl(i) first. Now vl(i) knows that its left neighbour vl(l(i)) is u3. Then
vl(i) modifies the message to contain the information that vl(l(i)) is u3, and
vr(i) is um, and forwards it along C. This procedure continues until all the
vertices of Conv(C) have been relabeled. For the polygon shown in Figure 7,
the message starting at v1 will reach v2 first, and relabel it u1. It will then
reach u2, then u6, u3, u5, and finally u4. Clearly the relabeling procedure
uses a linear number of messages.

Summarizing, we have:

Theorem 5.6 The message complexity of the convex hull in geometric net-
works is O(n log2 n) messages.

6 Discussion

The planarity restriction imposed on geometric networks is essential to our
work. Finding non-planar embeddings of distributed networks is trivial, e.g.
a processor with id x could simply assume that it is located at point (x, x2).
Finding planar embeddings of distributed networks, on the other hand, is a
more challenging problem.

For rings, we know that the problem of finding convex embeddings has
O(n log n) message complexity; first a leader is elected, then the leader sends
a message around the ring, renaming the processors with consecutive integers
1 to n. Then if a processor gets value i, it chooses (i, i2) as its coordinates. To
show that this algorithm is optimal, notice that once the embedding has been
obtained, we can elect a leader in O(n) messages. However since election
in a ring takes Θ(n log n) messages, it follows that our convex embedding
algorithm for rings is optimal.

Furthermore, geometric information does not help to reduce the message
complexity of problems that require Ω(n log n) messages in a geometric ring.
To prove this, suppose that some problem P can be solved with Θ(f(n))
messages in a geometric ring. To solve P in a ring (not necessarily geomet-
ric), we can first find a planar embedding of the ring in O(n log n) messages,
then run the geometric algorithm, solving the problem with O(f(n)+n log n)
messages.

The question remains whether there is a distributed algorithm to find a
planar (not necessarily convex) embedding of a ring with smaller message
complexity, o(n log n).

13

We do not know if the convex hull algorithm outlined in the previous
section is optimal. However we venture the following conjecture:

Conjecture 6.1 The message complexity of the convex hull problem for
geometric networks is Ω(n log2 n). The same bound holds for geometric trees.

Λψ

References

[1] An Atlas of Cyberspaces,
http : //www.geog.ucl.ac.uk/casa/martin/atlas/isp maps.html.

[2] James E. Burns, “A formal model for message passing systems,” Techni-
cal Report TR-91, Computer Science Department, Indiana University,
Bloomington, September 1980.

[3] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publish-
ers, Inc. 1996.

[4] F. Preparata, and M.I. Shamos, “Computational Geometry, an intro-
duction”, Springer Verlag, (1985).

[5] Gerard Tel, Introduction to Distributed Algorithms, Cambridge Univer-
sity Press, 1994.

14

(b)

2

2

top top

e 2

e 1

C2C1

(a)

e 1

e 2

2

3

2

top

bottom

C1 C2

3

Figure 1: Inductive construction for the leader election lower bound.

15

(b)

e 2

e 1

C1 C2

top top

e 1

e 2

C1 C2

(a)

2

2

2

2

bottom

top

3

Figure 2: Inductive construction for the external face lower bound.

16

v
1

vn

v
2

vn/2

Figure 3: The boundaries of P1 and P2 intersect at most twice.

vn
L

w =ws
u1 w1

w3

u =ur 4 4

2w =wt

u =up 2

Figure 4: Defining P
′

1 and P
′

2.

17

6w =wt
u ru1 w1

u p

u
r/2

Figure 5: Finding up and wt.

w =wst
u r

u1

w1

u p

r/2

wm

L

e

u

Figure 6: Solving the case wt = ws.

18

v
1

vn

v
2

u
6

u
1

u
2

u
3

u
4

u
5

Figure 7: Realbeling the vertices of Conv(C).

19

