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Abstract

Let S be a set of n points in general position in the plane, labelled bijectively with the integers
{0, 1, . . . , n − 1}. Each edge (the straight segment that joins two points) is labelled with the
sum of the labels of its endpoints. In this note we investigate the maximum size of noncrossing
matchings and paths on S, under the requirement that no two edges have the same weight.

1 Introduction

The study of geometric graphs on point sets in the plane has received a considerable amount of
attention lately [6, 8]. In particular, matching problems on bicolored point sets have been studied.
A folklore result asserts that any point set with 2n points, n blue and n red, always admits a
geometric (that is, no two edges cross) perfect matching, where the edges are straight line segments
joining points with different colors. A similar problem attributed to Aharoni and Saks (see [4]
and [5]) is the following. Consider a set S of n = w + b points in the plane in general position,
where w of them are white and b of them are black. The question is if there is a “near perfect”
geometric matching, but in this case we require the edges to be straight line segments joining
points with the same color. Dumitrescu and Steiger [5] proved that at least 83.33% of the points
can always be matched. They also showed that there is a configuration of colored points in which
at most 99.36% of the points can be matched.

A classical open problem in Graph Theory is to decide if every tree T is graceful, that is, if the
n vertices of T can be injectively labeled with the integers 0, 1, . . . , n − 1, in such a way that the
weights of all the edges of T are different, where the weight of an edge is the absolute value of the
difference of its endpoints.

In this paper we introduce the study of some geometric problems inspired by graceful trees. Let S
be a set of points in convex position, and consider any labeling of the elements of S with the integers

∗Instituto de Matematicas, UNAM. Mexico City, Mexico. Supported by Grant PAPIIT IN106305–3. E–mail:
garaujo@matem.unam.mx

†Department of Mathematics, University of Illinois at Urbana-Champaign. Urbana, IL, 61801. Supported by NSF
Grant DMS–0302804. E–mail: jobal@math.uiuc.edu

‡Facultad de Ciencias, UNAM. Mexico E–mail: ruy@ciencias.unam.mx
§Instituto de F́ısica, UASLP. San Luis Potosi, Mexico, 78000. Supported by FAI–UASLP and by CONACYT

Grant 45903. E–mail: gsalazar@ifisica.uaslp.mx
¶Instituto de Matematicas, UNAM. Mexico City, Mexico. Supported by CONACYT Grant 45876. E–mail:

urrutia@matem.unam.mx

1



11

22

33

44

55

66

77

88

11

22

33

44

55

66

77

88

11

12

14

15

16 17

Figure 1: Given the labeled set of 8 points in convex position on the left hand side, on the right
hand side we give a graceful triangulation: the weight of each triangle (that is, the sum of the labels
of its vertices) is different to the weights of all the other triangles.

0, 1, . . . , n − 1. Our aim is to find plane geometric graphs whose vertex set is S, e.g. matchings,
paths, trees, in such a way that the weights of the edges of our graph are all different, where the
weight of each edge is defined in terms of the labels of its endpoints.

Our starting point was the following question raised by Urrutia at the Indonesia–Japan Joint
Conference on Combinatorial Geometry and Graph Theory in 2003: does there exist a triangulation
of S such that the weights of all the triangles of S are different, where the weight of a triangle is
the sum of the labels of its vertices? (see Fig. 1).

In this paper, we let the weight of an edge be the sum of the labels of its endpoints. A graph
with all the edges having different weights is harmonic (and it is (mod m)–harmonic) if all the
edges have different weights modulo m.

We consider the following problem.

Question 1 What is the maximum size of a noncrossing harmonic matching (or path) which is
always guaranteed in a configuration of n labelled points in general position in the plane?

We start by noting that the interest on sparse harmonic substructures must naturally focus on
paths or matchings, as opposed to trees, since any spanning star is harmonic.

As it is often the case in combinatorial geometry, in this work we shall focus in the case in which
the point set is in convex position.

A remarkable result of Balogh, Pittel and Salazar [3] almost answers the question for the case
in which the points are randomly labelled.

Theorem 2 ([3]) Let S be an n–point set in convex position, where each point is independently
labelled at random with an integer in {0, 1, . . . , n − 1}. Then with high probability there is a non-
crossing (mod n)–harmonic matching covering at least n − (n log n)1/3 points. Furthermore, with
probability at least (n log n)−1/3 there is a perfect noncrossing (mod n)–harmonic matching (or, if
n is odd, a matching covering n − 1 points).
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It was also conjectured in [3] that with high probability there is always a perfect (mod n)-
matching (or, if n is odd, a matching covering n − 1 points). This conjecture was supported by
numerous computer simulations.

Theorem 2 and some other heuristic arguments led us to the following conjecture.

Conjecture 3 In any set of n points in convex position, labelled bijectively with the integers in
{0, 1, . . . , n − 1}, there is a noncrossing path (and consequently a matching) of size Θ(n).

A straightforward application of the Erdős–Szekeres theorem yields that there always exists a
noncrossing harmonic path (and consequently a matching) of size Ω(n1/2). It is quite surprising
that (up to a constant factor) this is the best known lower bound.

Our results handle a variant of this problem: the separable matching case. A matching M (of a
point set in convex position) is separable if its vertex set can be split into two sets U,U ′ of equal size,
such that (i) the vertices of U (and consequently of U ′) appear consecutively in the convex hull;
and (ii) every edge of M has an endpoint in U and the other endpoint in U ′. Separable matchings
are equivalently characterized by the property that there is a line that crosses every edge of the
matching. This alternative definition has the advantage that it seamlessly extends to paths: a path
is separable if there is a line that crosses all its edges. Separable matchings appear naturally when
searching for large matchings and paths in point sets in convex position; see for instance [1, 7].

We shall focus our attention on separable matchings and paths. Since we are interested in lower
bounds, we may as well assume that the point set is divided (by a line) into two sets P,Q of equal
size; here, we search for (P,Q)–matchings, that is, matchings in which every edge has a vertex in P
and another vertex in Q ((P,Q)–paths are defined similarly: the vertices of such a path alternate
between P and Q). Our aim was to consider the following question.

Question 4 Let P,Q be n–sets of points, such that P ∪Q is in convex position. Suppose that the
points of P are labelled 0, 1, 2, . . . , n − 1 (in the cyclic order in which they appear by the convex
hull), and that the labels of Q form any permutation of 0, 1, 2, . . . , n − 1. What is the number of
edges in a maximum size noncrossing harmonic (P,Q)–path (or matching)?

Note that in these questions, the labelling map is two–to–one. As we have observed above, from
any given path it is trivial to obtain a matching of the same order, so we shall consider only the
question for paths. The main result in this note is the following.

Theorem 5 If n is sufficiently large, then there is a noncrossing harmonic (P,Q)–path with at
least (1/9)n2/3 points.

2 Proof of Theorem 5

Throughout the proof, P = {p0, p1, . . . , pn−1} and Q = {q0, q1, . . . , qn−1} are set points, with P ∪Q
in convex position, and such that the points in P ∪Q appear in the convex hull in the order p0, p1,
. . . , pn−1, qn−1, qn−2, . . . , q0. Also, the labeling map � : P ∪Q → {0, 1, . . . , n − 1} satisfies �(pi) = i
for every i, and (�(q0), �(q1), . . . , �(qn−1)) is a permutation of (0, 1, . . . , n − 1) (see Figure 1).
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Figure 2: Configuration analyzed in Theorem 5, with P = {p0, p1, . . . , pn−1} and Q =
{q0, q1, . . . , qn−1}. The assumption on the labels is (see right hand side figure) that each pi has
label �(pi) = i, whereas the label �(qj) of each qj is arbitrary, as long as �(q0), �(q1), . . . , �(qn−1) is
a permutation of 0, 1, . . . , n − 1.
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In order to avoid a cumbersome analysis involving floors and ceilings, we assume in the proof
that n1/3 is an integer divisible by 3.

Suppose first that �(q0), �(q1), . . . , �(qn−1) has a decreasing subsequence �(qj1), �(qj2), . . . , �(qjs) of
size s = (1/3)n2/3 (note that the assumption on the divisibility of n1/3 by 3 implies that s is indeed
an integer). It is readily checked that then the noncrossing path (qj1 , p0, qj4, p1, qj7, p2, qj10 , p3, . . . ,
qjs−2, ps/3−1) is harmonic. Since this path has 2(s/3) = (2/3)n2/3 vertices, in this case we are
clearly done. Thus we may assume that no such decreasing subsequence exists.

The nonexistence of such a decreasing subsequence allows us to establish the existence of a
relatively small collection of pairwise disjoint increasing subsequences, whose union is relatively
large.

Claim There exist t ≤ (1/6)n1/3 pairwise disjoint sequences S1, S2, . . . , St, each of which is
a subsequence of �(q0), �(q1), . . . , �(qn−1), such that |S1| ≥ |S2| ≥ . . . ≥ |St|, and

∑t
i=1 |Si| =

(1/9)n2/3.

Proof of Claim. First we note that since, by assumption �(q0), �(q1), . . . , �(qn−1) does not have a
decreasing subsequence of size (1/3)n2/3, it follows that �(q0), �(q1), . . . , �(qn−1) can be decomposed
into m < (1/3)n2/3 increasing subsequences T1, T2, . . . , Tm, labelled so that |T1| ≥ |T2| ≥ . . . ≥ |Tm|.

Note that if |Ti| ≥ (1/9)n2/3 for some i, then there clearly exists a noncrossing harmonic path
of size at least (2/9)n2/3 in P ∪Q. Thus we assume that |Ti| < (1/9)n2/3 for every i.

Let t be the smallest integer such that
∑t

i=1 |Ti| ≥ (1/9)n2/3. We claim that |Tt| ≥ 2n1/3. For
suppose that |Tt| < 2n1/3. Then n =

∑m
i=1 |Ti| =

∑t
i=1 |Ti| +

∑m
i=t+1 |Ti| < (m − t)(2n1/3) +

O(n2/3) < (1/3)n2/3(2n1/3) + O(n2/3) = (2/3)n + O(n2/3), a contradiction. Thus |Tt| ≥ 2n1/3, as
claimed.

Moreover, we claim t ≤ (1/6)n1/3. Indeed, if t > (1/6)n1/3, then
∑t

i=1 |Ti| > (1/6)n1/3(2n1/3)
= (1/3)n2/3. By the choice of t this would imply that |Tt| > (1/3 − 1/9)n2/3 = (2/9)n2/3, a
contradiction.

Finally, let Si := Ti for i < t, and let St be any subsequence of Tt such that
∑t

i=1 |Ti| = (1/9)n2/3.
Clearly, the subsequences S1, S2, . . . , St satisfy the required properties.

Let �(qi0), �(qi1), . . . , �(qi
(1/9)n2/3−1

) be the subsequence of �(q0), �(q1), . . . , �(qn−1) defined by the
union of the subsequences Si given by the previous Claim.

We shall define a noncrossing harmonic path P , whose points alternate between P and Q.
Moreover, the points of P belong alternately to P and to {qi0 , qi1 , . . . , qi

(1/9)n2/3−1
}.

Actually, we recursively construct a sequence of noncrossing harmonic paths P0, P1, P2, . . . ,
P(1/9)n2/3−1, such that Pi has 2i + 2 vertices, and such that Pi+1 is an extension of Pi. At the end
of the process we simply let P := P(1/9)n2/3−1 be the required path.

These paths are defined as follows. Let j0 := 0 and P0 := (pj0 , qi0). Now let k > 0, and
suppose that Pk−1 = (pj0, qi0 , pj1, qi1 , . . . , qik−2

, pjk−1
qik−1

) has been constructed (we remark that
i0, i1, . . . , have been all defined already, in the paragraph after the proof of the Claim; our task in
the construction of the paths Pi is to define j0, j1, j2, . . .). Then let jk be the smallest integer in
the closed interval Ik := [jk−1 + n1/3 + 1, jk−1 + 2n1/3] such that the (obviously noncrossing) path
Pk := (pj0 , qi0 , pj1, qi1 , . . . , pjk−1

, qik−1
, pjk

, qik) is harmonic.

We need to show that each jk can be chosen as required. For k = 0 there is nothing to
prove, so assume that k > 0, and that every jm with m < k has been chosen with the required
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properties. Since by inductive assumption Pk−1 is harmonic, it suffices to show that there is an
integer jk in Ik such that neither �(qik−1

) + jk nor jk + �(qik) is a label of an edge in Pk−1. The
first (essential) observation is that jk−1 + 2n1/3 is less than n (that is, we never run out of points
while searching for jk). This follows since j0 = 0 and jr ≤ jr−1 + 2n1/3 for every r ≥ 1, and so
jk ≤ k(2n1/3) ≤ (1/9)n2/3(2n1/3) < n.

Now the key facts to prove the existence of an integer jk in Ik such that neither �(qik−1
) + jk

nor jk + �(qik) is a label of an edge in Pk−1 are the following:

(i) if qix , qiy , qiz are different vertices in Pk−1, and each of them is incident with an edge in Pk−1

whose label is in {�(qik−1
) + w | w ∈ Ik} then �(qix), �(qiy), �(qiz ) cannot all belong to the

same Si (recall the definition of the subsequences Si from the Claim above);

(ii) if qix , qiy , qiz are different vertices in Pk−1, and each of them is incident with an edge in Pk−1

whose label is in {w + �(qik) | w ∈ Ik}, then �(qix), �(qiy), �(qiz ) cannot all belong to the same
Si.

We prove (i); the proof of (ii) is quite similar. Seeking a contradiction, suppose that �(qix), �(qiy),
�(qiz) are as in (i), and that they all belong to the same subsequence Si. Without any loss of
generality, �(qix) < �(qiy) < �(qiz), so that qix , qiy , qiz occur in this order in Pk−1. Since qix and
qiz are not consecutive in Si, it follows from the construction of P0, P1, . . . , Pk−1 that if qix and qiz

are adjacent to vertices pa, pb in Pk−1, respectively, then b − a > n1/3. This in turn implies (since
�(qix) < �(qiz)) that the labels of each edge in Pk−1 incident with qix and of each edge in Pk−1

incident with qiz differ by more than n1/3. This contradicts the assumption that two such edges
have labels in the set {�(qik−1

)+w | w ∈ Ik}, since this last set consists of n1/3 consecutive integers.

Since there are at most (1/6)n1/3 sequences Si, (i) implies that at most 2 · (1/6)n1/3 = (1/3)n1/3

of the edge labels in Pk−1 are contained in {�(qik−1
) + w | w ∈ Ik}. Analogously, (ii) shows that

there are at most (1/3)n1/3 edge labels in Pk−1 contained in {w+�(qik) | w ∈ Ik}. Since |Ik| = n1/3,
it follows that there is a jk ∈ Ik such that neither �(qik−1

) + jk nor jk + �(qik) is a label of an edge
in Pk−1, as required.

Thus the paths P0, P1, . . . , P(1/9)n2/3−1 are all well–defined. As we mentioned above, this com-
pletes the proof, since P := P(1/9)n2/3−1 satisfies the required properties.

3 Concluding remarks and open questions

Most interesting problems remain open. First of all, there is a huge gap between the best lower
bound known for the size of a harmonic path (or matching) when the labeling map is a bijection
(namely Ω(n1/2)), and the value Θ(n) put forward in Conjecture 3. We strongly believe that the
correct bound is Θ(n), but are still intrigued at the level of sophistication required in the proof of
a weaker and restricted version of this statement, namely the one we worked out in Theorem 5.

Using an exhaustive computer search, we have shown that for collections with up to 14 points, if
the labeling map is a bijection then a perfect matching always exists. However, for n = 16, 18, ..., 28,
we were able to find labelling in which no such perfect matching exists. For instance, if n = 16,
and the point labels are, in cyclic order, (1, 15, 2, 14, 3, 12, 4, 13, 8, 9, 7, 10, 6, 11, 5, 16), then there is
no harmonic perfect matching. It would be interesting to have a general construction to show that,
for every n ≥ 16, there is a labeling for which no perfect matching exists.
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We close with one more conjecture that, not surprisingly, hints at a more than superficial
relationship between the existence of large harmonic substructures and a widely studied area,
namely sum sets of integers. For any set A of n integers, let M(A) denote the minimum size of a
harmonic matching that can be guaranteed if we bijectively label n points in convex position with
the elements of A (an analogous function P (A) may be defined for paths, etc.).

Conjecture For each integer n, the function M is minimized (only) at those sets A that form an
arithmetic progression.
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