
Some Open Problems
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1 Introduction

In this paper we present a collection of problems which have defied solution
for some time. We hope that this paper will stimulate renewed interest in
these problems, leading to solutions to at least some of them.

1.1 Points and Circles

In 1985, in a joint paper with V. Neumann-Lara, the following result was
proved: Any set Pn of n points on the plane contains two points p, q ∈ Pn

such that any circle containing them contains at least n−2
60

elements of Pn.

This result was first improved to n
30

[5], then to b n
27
c+2 [10], to d 5(n−3)

84
e [11],

and to approximately n
4.7

[9]. Our first conjecture presented here is:

Conjecture 1 Any set Pn of n points on the plane contains two elements

such that any circle containing them contains at least n
4
± c elements of Pn.

An example exists with 4n points, due to Hayward, Rappaport and
Wenger [10], such that for any pair of points of Pn there is a circle containing
them that contains at most n − 1 elements of Pn, see Figure 1.

This problem has been studied for point sets in convex position (that
is when the point set is the set of vertices of a convex polygon), for point
sets in higher dimensions, and for families whose elements are not points,
but convex sets [1, 4, 5]. For point sets in convex position, the problem was
settled by Hayward, Rappaport and Wenger [10], who proved that the tight
bound for this case is dn

3
e + 1.
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Figure 1: A point set P4n with 4n points such that for any two points p, q of
P4n there is a circle containing them that contains at most n − 1 additional
points of P4n.

1.2 Convex partitionings of the convex hull of a point

set

The following problem arose some years ago during a series of meetings in
Madrid with M. Abellanas, G. Hernandez, P. Ramos and the author. We were
studying problems on quadrilaterizations of point sets. Given a set of points
Pn in general position, a collection F= {Q1, . . . , Qm} of convex polygons
with disjoint interiors is callead a convex decomposition of the convex hull
Conv(Pn) of Pn, a convex decomposition of Pn for short if:

1. The union of the elements of F is Conv(Pn)

2. No element of F contains an element of Pn in its interior.

If all the elements of F are quadrilaterals (resp. triangles), F is called a
convex quadrilaterization (triangulation) of Pn. It is well known that not all
point sets admit a convex quadrilaterization (even if they contain the right
number of points in their convex hull and their interior). It is easy to see
that if a point set with n points, k on the boundary of its convex hull, has a
convex quadrilaterization, it contains exactly (n+k−2)

2
elements. We observed

that although convex quadrilaterizations of point sets do not always exist,
we were always able to obtain convex partitionings of all point sets with at
most n + 1 elements that we tried. Thus we conjectured:
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Figure 2: A point set P3n of 3n points in convex position such that for any
two points in P3n there is a circle containing them which contains at most
n − 1 extra elements of P3n.

a b

Figure 3: A point set with 3n elements such that any convex partitioning of
it has at least 3n + 1 polygons.

Conjecture 2 Any set Pn of n in general position has a convex decomposi-

tion with at most n + 1 elements.

A set of points achieving this bound is shown in Figure 4. Our conjecture
was proved false in 2001 by O.Aichholzer and H.Krasser [2]. They were able
to construct a point set Pn such that any convex partitioning of it contains
at least n + 2 elements.

It is known [16] that any point set Pn has a convex partitioning with at
most d3n−2k

2
e elements, where k is, as before, the number of elements of Pn on

the boundary of its convex hull. A convex partition with at most that number
of elements can be obtained as follows. First calculate a triangulation of Pn.
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Figure 4: Aichholzer and Krasser’s point set. All the inner points are cocir-
cular, except for the center of the circle on which the points lie, which is also
in the point set.

Then in a greedy way, delete as many edges as possible from our triangulation,
making sure that the remaining edges induce a convex partitioning of Pn. It
is proved in [16] that the remaining edges induce a convex partitioning of Pn

with at most d3n−2k
2

e elements; see Figure 5.

Figure 5: Consider the triangulation on the left of the point set Pn with
fourteen points. Then we can remove at most five edges of its edges to obtain
a convex partitioning of Pn. The removal of exactly five edges produces a
convex partitioning of this point set with d 3(14)−2∗4

2
e = 14 elements.

1.3 Problems on line segments

The next problem is at least ten years old.
Let F= {l1, . . . , ln} be a family of disjoint closed segments. A simple

alternating path of F is a non intersecting polygonal chain with 2k + 1 line
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segments li, i = 1, . . . , 2k+1 such that for all i, k = 0, . . . , k, l2i+1 belongs to
F . Segments l2i are not allowed to intersect other elements of F , i = 0, . . . , k.

Conjecture 3 Any set F= {l1, . . . , ln} of n disjoint line segments has a

simple alternating path with at least O(lnn) elements.

In Figure 6 we show a family of 2n−1 segments such that any alternating
path has O(n) elements. The family consists of 2n − 1 segments with end-
points on a circle such that l2i is visible from {lj : j = i, 2i + 1, 4i, 4i + 1},
i = 1, . . . , 2n−1 − 1. Moreover l2i+1 is visible only from {lj : j = i, 2i +
2, 4i + 2, 4i + 3}, i = 0, . . . , 2n−1 − 1.

Figure 6: Any alternating path of this set of line segments has O(lnn) ele-
ments.

The following is a related problem. Given a a family F of n disjoint closed
line segments, find a subset of it that admits a simple alternating path. That
is, in our previous problem, remove the restriction that the segments l2i are
not allowed to intersect other elements of F , i = 0, . . . , k. In this version of
the problem, it is not difficult to prove that any family with n line segments
contains a subset with at least n

1

5 elements that admits a simple alternating
path. This can be proved using techniques similar to those used in [14].

Observe that if F has n
1

5 elements with disjoint projections on the x-axis,
this subset admits a simple alternating path, and we are done. If this is
not the case, then there is a vertical line L that intersects at least k ≥ n

4

5

segments of F . Let S= {m1, . . . , mk} be the sequence containing the slopes
of the line segments in F intersected by L, according to the order in which
they are intersected by L. Then by a well known result of Erdös-Szekeres, S
contains an increasing or decreasing subsequence S

′

with at least n
2

5 elements.
Suppose w.l.o.g. that the elements of S

′

are in increasing order. Let F
′

be
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the subset of F corresponding to the elements of S
′

. Let Y be the sequence
defined by the second coordinates of the left endpoints of the elements in F

′

.
Once more, there is an increasing or decreasing subsequence of Y with n

1

5

elements. It is easy to see now that the line segments of F corresponding
to these elements admit a simple alternating path. This bound, however,
seems to be far from optimal. We believe that the correct value is O(n

1

2 ).
There are collections of n2 line segments such that any subset of them that
admits a simple alternating path contains at most 2n segments. In Figure 7
we illustrate how to obtain such family for n = 5. This construction is easily
generalizable for any n ≥ 3.

Figure 7: A family with 52 = 25 segments such that any subset of it admits
a simple alternating path with at most 2 × 5 = 10 elements.

1.4 Separability

Given two disjoint closed convex sets, we say that a line l separates them
if the convex sets are such that one is contained in each of the open half-
planes defined by l. H. Tverberg [20] studied the following problem. Let
Kd(r, s) = k be the smallest integer k such that given n disjoint convex sets
C1, · · · , Ck, there exists a closed half-plane containing at least r convex sets,
and its complement contains s of them. Tverberg proved that K2(r, 1) always
exists. Examples found by K. Villanger show that K2(2, 2) does not exist.
Villanger’s example consists of an arbitrarily large number of non-collinear
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line segments such that the convex hull of any pair of them contains the point
(1, 1).

It is known that K2(r, 1) ≤ 12(r−1); see [12, 7]. There are families of line
segments F with 3m elements such that no element of F can be separated
from more than m + 1 elements [7, 8].

Conjecture 4 Any family F of n disjoint closed convex sets has an element

that can be separated with a single line from at least bn
3
c ± c elements of F .

It is known [3] that for any family C of congruent disks with O(m2 ln m)
elements, there always exists a direction α such that any line with direction
α intersects at most m elements of C. It then follows that there is a line
that leaves at least (m2 lnm)−m

2
elements of C in each of the semiplanes which

it defines. For families of n circles, not necessarily of the same size, it is
known [6] that there is a line that separates a circle from at least n−c

2
other

circles.

1.5 Illumination

One of my favourite areas is that of illumination. Here I will mention some
open problems related to this area of research. A more extensive list of open
problems and results in this area can be found in [21].

An α-floodlight is a light source that illuminates within an angular region
of size α. For example, a π

3
-floodlight illuminates an angular wedge of the

plane with angular width π
3
. The source of illumination is located at the apex

of the angular region. Given a simple polygon, a floodlight is called a vertex

floodlight if its source is located at a vertex of the polygon. The following
old conjecture of mine was believed to be true up to December, 2001, when
I found a counterexample:

Conjecture 5 Any simple polygon with n vertices can be illuminated with

d3n
5
e − 1 vertex π-floodlights. We do not allow more than one floodlight on

any vertex of the polygon.

A family of polygons that requires d 3n
5
e − 1 π-vertex floodlights was ob-

tained by F. Santos; see Figure 8.
A family of polygons with 9 + 8k vertices which require 5(k + 1) vertex

π-floodlights to illuminate them can be constructed by using the star shown
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Figure 8: A polygon with 5n + 1 vertices which requires 3n vertex π-
floodlights can be obtained by pasting n copies of the star polygon on the
left.

in Figure 9. It is tempting to conjecture that the correct bound for the
previous conjecture is 5(n−1)

8
± c. Recently Speckman and Töth proved that

any polygon with n vertices, k of which are convex, can be illuminated with
b2n−k

3
c vertex π-floodlights. We close this section with two long standing

conjectures on illumination, the first one due to T. Shermer:

Figure 9: Constructing a family of polygons with 8n+1 vertices that require
5n vertex π-floodlights to illuminate them.

Conjecture 6 Any polygon with n vertices and h holes can be illuminated

with bn+h
3
c vertex guards.

In this case, the guards can illuminate all around themselves. The second
conjecture is due to G. Toussaint, and was first stated in 1981:

Conjecture 7 There is an n0 such that any polygon P with n ≥ n0 vertices

can be illuminated with bn
4
c edge guards. That is, any polygon P with n ≥ n0

vertices has a subset of bn
4
c edges such that any point in P is visible from

one of these edges.
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Two surveys in this area [18, 21] and a book by O’Rourke [17] contain
most of the information concerning illumination and these problems up to
2000.
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