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Abstract

Let P and Q be disjoint point sets with 2k and 2l elements respectively, and M1

and M2 be their minimum weight perfect matchings (with respect to edge lengths).
We prove that the edges of M1 and M2 intersect at most |M1| + |M2| − 1 times. This
bound is tight. We also prove that P and Q have perfect matchings (not necessarily of
minimum weight) such that their edges intersect at most min{r, s} times. This bound
is also sharp. Our result is motivated by the study of the following problem: Let
P1, ..., Pk be a collection of disjoint point sets in <2 in general position, each with an
even number of points. Find for each 1 ≤ i ≤ k a perfect matching Mk of Pi such that
the edges of M1, ...,Mk intersect few times. We give sharp bounds for this problem too.
A natural way to attack this problem is to find, for every pair i a canonical matchings
Mi (e.g. minimum weight matchings), such that for every pair {i, j} the edges of Mi

andMj have few intersections.

1 Introduction

A geometric graph is a graph whose vertices are points on the plane, and its edges line
segments joining pairs of vertices. The study of geometric graphs has received considerable
attention lately, see [1, 2, 3, 4, 5, 6, 8, 9, 10]. They also play an important role in Computa-
tional Geometry and many of its applications. In several of the papers cited before, problems
investigating geometric graphs on multicolored point sets have been studied. Tokunaga [11]
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solved the following problem: Given two sets of points R and B in <2 find two geometric
spanning trees TR and TB such that the number of times their edges intersect is minimized.
Kano, Merino and Urrutia [7] extended Tokunaga’s result to multicolored point sets. They
proved that for any collection of k point sets P1, ..., Pk there is for each i a geometric spanning
tree Ti of Pi such that the edges of Ti, ..., Tk intersect at most (k− 1)(n− k) + (k)(k−1)

2
where

|P1∪ ...∪Pk| = n. They also prove that given two point sets P and Q their minimum weight
spanning trees intersect a linear number of times, where the weight of an edge is its length.

Figure 1: Minimum weight perfect matchings intersect few times

In this paper we continue our study of finding geometric graphs for multicolored point sets
with few intersections. Here we study the following: Given two point sets P and Q, with
2r and 2s points respectively, find perfect matchings for each of them such that their edges
intersect as few times as possible. We prove: The edges of the minimum weight perfect
matchings of P and Q intersect at most r+s−1 times, this bound is tight. See Figure 1. As
a corollary of this we obtain the following result: Let P1, ..., Pk be a colection of k disjoint
point sets in <2 such that Pi has 2ri elements. Then their minimum weight spanning trees
intersect at most

Σi6=j;i,j∈{1,...,k}ri + rj − 1

times. This bound is tight. We also consider the problem of finding perfect matchings (not
necessarily minimum weight perfect matchings) with few intersections. We prove that P and
Q always have perfect matchings such that their edges intersect at most min{r, s} times.
All point sets considered here, or union of point sets considered here will be assumed to be
in general position. Similarly the term graph will always refer to geometric graphs. Thus in
the sequel the terms general position and geometric graphs will be omitted.

2 Minimum Weight Perfect Matchings

Let P = {p1, ..., p2n} be a point set with 2n elements. A perfect matching M of P is a
partitioning of P into n pairs of vertices (called the edges of M) such that every pi ∈ P

belongs to exactly one pair of M . The weight of an edge {pi, pj} of M is the length of the
line segment pi−pj joining pi to pj. A minimum weight matching for P is a perfect matching
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such that the sum of the length of its edges is minimized. Our main objective in this section
is to prove the following result:

Theorem 1 Let M and M ′ respectively be minimum weight perfect matchings of two disjoint
point sets P and Q with 2r and 2s elements respectively. Then the edges of M and M ′

intersect at most r + s − 1 times, this bound is tight.

That our bound is tight follows from examples as shown in Figure 2.

Figure 2:

Some preliminary results will be needed.

The next observation will be useful. Given two points p and q, |p− q| denotes the length of
the line segment joining them.

Observation 1 Let p1, p2 and p3 be three points in <2. Suppose that for some values W

and W ′ we have that

W + |p1 − p2| ≤ W ′ + |p2 − p3|

Then if we choose any point p′
2 in the interior of the segment joining p1 to p2 we have that

W + |p1 − p′2| < W ′ + |p′2 − p3|.

Our observation is clearly true when |p1 − p2| = |p2 − p3|, in this case |p1 − p′2| < |p′2 − p3|.
When |p1 − p2| = |p2 − p3| + c, c > 0 let p′1 be the point in the interior of p1 − p2 such that
|p′1 − p2| = |p2, p3|. If p′2 lies in the segment p′1 − p2 our result follows with W” + |p′

1 − p2|
and W = |p2 − p3|. The remaining cases can be handled in a similar way. See Figure 3.

Let P be a point set with 2n points. Two results follow right away from our observation:

Lemma 1 Let M be a minimum weight perfect matching of P . Suppose that the edges of
M are {p1, p2}, {p3, p4}, ..., {p2n−1, p2n}. Then if for i = 1, 3, ..., 2n− 1 we choose two points
p′i and p′i+1 in pi − pi+1, p′i closer to pi than p′i+1 then:

|p′1 − p′2| + |p′3 − p′4| + ... + |p′2n−1 − p′2n| < |p′2 − p′3| + |p′4 − p′5| + ... + |p′2n − p′1|
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Figure 3:

Proof: Since M is a minimum weight perfect matching of P , we have:

|p1 − p2| + |p3 − p4| + ... + |p2n−1 − p2n| < |p2 − p3| + |p4 − p5| + ... + |p2n − p1|.

Move first p2 to p′2, take W = |p3−p4|+ ...+ |p2n−1−p2n|, W ′ = |p′4−p′5|+ ...+ |p′2n−p′1| and
apply our observation. Repeat this process until each pi has been moved to p′i. Our result
follows

We also have:

Lemma 2 Let {pi, pj} be an edge of a minimum weight perfect matching M of P . Then if
we choose a point p

′

j in the interior of the segment joining pi to pj, then M ′ = M −{pi, pj}+

{pi, p
′

j} is a minimum weight perfect matching of P
′

= P − {pj} + {p
′

j}. (See Figure 4).

Proof: Let {pi, pj} be an edge of a minimum weight perfect matching M of P . Assume
w.l.o.g. that pi = p1, pj = p2. Let p

′

2 an interior point of the segment p1 − p2, and
P ′ = P − p2 + p′2, and assume that M= M − {p1, p2} + {p1, p

′

2} is not a minimum weight
matching of P ′

2n.

Let M ′ be a minimum weight perfect matching of P ′. Clearly {p1, p
′

2} is not in M ′. Then in
M∪M ′ there is a cycle C ′ containing {p1, p

′

2} such that its edges alternate between M and
M ′. By induction, we can assume that C ′ covers all the elements of P ′.

Suppose that when we traverse the edges of C ′ the points of P ′ appear in the order p1, p
′
2, p3, ..., p2n.

Observe that with this labeling, the edges {p′
2, p3}, ..., {p2n, p1} belong to M ′. Let C be the

cycle containing all the edges of C ′ except {p1, p
′

2} and {p
′

2, p3} plus the edges {p1, p2} and
{p2, p3}. See Figure 5.

Since M is a minimum weight perfect matching of P , we have that

|p1 − p2| + |p3 − p4| + ... + |p2n−1 − p2n| < |p2 − p3| + |p4 − p5|... + |p2n − p1|

4



p
i

p
j

p
i

p
j
’

(a)
(b)

Figure 4: (a) A point set with a minimum weight perfect matching. (b) When we change
pj by a point p

′

j on the interior of the segment joining pi to pj, M − {pi, pj} + {pi, p
′

j} is a

minimum weight perfect matching of P − {pj} + {p
′

j}.

If W = |p3 − p4| + ... + |p2n−1 − p2n| and W ′ = |p4 − p5|... + |p2n − p1|, we have that

W + |p1 − p2| < W ′ + |p2 − p3|

But by Observation 1

W + |p1 − p′2| < W ′ + |p′2 − p3|.

that is:

|p1 − p′2| + |p3 − p4| + ... + |p2n−1 − p2n| < |p′2 − p3| + |p4 − p5|... + |p2n − p1|

which contradicts that M ′ is a minimum weight perfect matching of P ′.

An obvious consequence of this result is the following lemma, which we call the Shrinking
Lemma:

Lemma 3 Let M a minimum weight perfect matching of P . For every edge {pi, pj} of M

let p
′

i and p
′

j be two points on the closed line segment joining pi to pj. Then the set of

edges {p
′

i, p
′

j} such that {pi, pj} ∈ M forms a minimum weight perfect matching of P ′ =

{p
′

1, ..., p
′

2n}.

5



p
2

p
1

p’
2

p
3

p
2n

Figure 5: The thick edges belong to M .

2.1 Colored Point Sets

Let P and Q be disjoint point sets with 2r and 2s points respectively. We now prove:

Lemma 4 Let M and M ′ be minimum weight perfect matchings for P and Q. Then the
intersection graph of M and M ′ contains no cycles.

Proof: Let G be the intersection graph of M ∪ M ′, that is the graph whose vertices are
the edges of M and M ′, two of which {u, v} ∈ M , and {x, y} ∈ M ′ are adjacent in G if
the line segments x − y and u − v intersect. Clearly G is bipartite. Suppose now that G

contains a cycle C. Then there are edges e1, e3, ..., e2k−1 in M and e′2, ..., e
′
2k in M ′ such that

e′i intersects ei−1 and ei+1, i = 2, ..., 2k− 2, and e′2k intersects e2k−1 and e1. Assume that the
endpoints of ei are pi, pi+1, and those of e′i are qi−1, qi.

For i = 2, 4, ..., 2k let ri−1 be the intersection point of ei−1 with e′i. For i = 3, 5, ..., 2k− 1 let
ri−1 the intersection point of e′i−1 with ei, and r2k be the intersection point of e′2k with e1.
Let C ′ the cycle with vertices {r2k, r1, ..., r2k−1}. See Figure 6.

Assume w.l.o.g. that

|r2k − r1| + |r2 − r3| + ... + |r2k−2 − r2k−1| > |r1 − r2| + |r3 − r4| + ... + |r2k−1 − r2k|

By the Shrinking Lemma, {r2k, r1}, {r2, r3}, ..., {r2k−2, r2k−1} is also a minimum weight per-
fect matching for {r1, r2, ..., r2k}. However {r1, r2}, {r3, r4}, ..., {r2k−1, r2k} is also a perfect
matching for the same point set with smaller weight, which is a contradiction. Therefore G

contains no cycles. By Lemma 1 the case

|r2k − r1| + |r2 − r3| + ... + |r2k−2 − r2k−1| = |r1 − r2| + |r3 − r4| + ... + |r2k−1 − r2k|

is impossible.
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Figure 6:

Theorem 1 now follows from the fact that the intersections among the edges of M and M ′

are the edges of G. But since G contains no cycles and r + s vertices, it contains at most
r + s − 1 edges.

2.2 Perfect Matchings

Before proceeding to study matchings for multicolored point sets, we study the problem
of finding perfect matchings for bicolored point sets with few intersections removing the
condition that our matchings have minimum weight. To start we recall recent results of
Dumitrescu and Steiger [5]. They studied the following problem: Given two disjoint point
sets P and Q find matchings M and M ′ for P and Q respectively, not necessarily perfect
(i.e. some points in both sets may be left unmatched) such that:

1. The edges of M and M ′ do not intersect

2. The sum of the cardinalities of these matchings is maximized

They proved that one can always match a surprisingly high percentage of points, i.e. 83.33%
of them. Their result was further improved to 85.71 % in [4] ¿From that one might get the
feeling that there are always perfect matchings for P and Q such that their edges intersect
cn times for c a very small constant. This unfortunately is not the case. Place on a circle 2n
red, and 2n blue points such that they alternate in color. Then we can always match 2n− 2
blue points, and 2n − 2 red points as shown in Figure 7 without creating any intersections.
However if we insist in choosing perfect matchings M and M ′ for our blue and red point

7



sets, it is straightforward to prove that their edges will always intersect at least n times! To
see this, simply observe that any edge joining two red points leaves an odd number of black
or an odd number of red points in each of the semi-planes determined by the line containing
it.

Figure 7:

We now prove:

Theorem 2 Given any two point sets P and Q with 2r and 2s elements respectively, we
can always find perfect matchings for them such that their edges intersect at most min{r, s}
times. Our bound is tight.

Proof: Consider the convex hull Conv(P ∪ Q) of P ∪ Q. If any two consecutive vertices of
Conv(P ∪ Q) belong to P then we can match them, remove them from P , and proceed by
induction. Suppose then that the vertices of Conv(P ∪ Q) alternate between P and Q, and
that the leftmost vertex of Conv(P ∪ Q) belongs to P .Let us label this point p1 and relabel
the remaining points in P − {p1} {p2, ..., p2r} such that if i < j, then pj lies above the line
joining p1 to pi. In a similar way label the points in Q {q1, ..., q2s}, see Figure 8. Observe
that below (respectively above ) the line joining p1 to p2 (resp. p1 to p2s) there is exactly
one point in Q; If there were at least two, we could pick and match two of them such that
the line segment joining them does not intersect the convex hull of the remaining elements
in P ∪ Q, and proceed by induction.

For each 1 < i < 2r, let the wedge Wi be the region obtained by intersecting the semilpane
above the line joining p1 to pi with the semiplane below the line joining p1 to pi+1, see
Figure 8. Let k be the index such that Wk q2 ∈ Wk. If k > 1 is odd, split P into two subsets,
R = {p1, ..., pk−1} and S = {pk, ..., p2r}, and Q into R′ = {q1, q2} and S ′ = {q3, ..., q2s}.
Our result follows by induction on the pairs of sets R and R′, and S and S ′. If k > 2 is
even then split P into R = {p2, ..., pk−1}, S = {p1, pk, ..., p2r}, and Q into R′ = {q1, q2},
S ′ = {q3, ..., q2s}, and proceed again by induction.
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Figure 8:

2.3 Minimum Weight Perfect Matchings in Multicolored Point
Sets

Consider a set of points P with 2n = 2n1 + ... + 2nk points such that for each i, 1 ≤ i ≤ k,
2ni elements of P are colored with color i. For each i let Pi be the set of elements of P with
color i. Let Mi be a minimum weight perfect matching of Pi. We prove:

Theorem 3 The edges of M1, ..., Mk intersect at most (k − 1)n − k(k−1)
2

times. The bound
is sharp.

Proof: By Theorem 1 for every i, j the edges of Mi and Mj intersect at most n1 + nj − 1
times. Adding over all pairs i ≤ i < j ≤ k we get our upper bound. To show that our bound
is tight, we construct a point set P as before in which for every pair of matchings Mi and
Mj their edges intersect exactly ni + nj − 1 times.

Consider a set R with 2n points in a straight line labeled p1, ..., p2n from left to right, such
that the distance between any two of them is at least 1. It is straightforward to see that in
the minimum weight perfect matching of R, p2i−1 and p2i are matched, i = 1, ..., n. If instead
of a straight line we place the elements of R on an almost flat convex arc C, i.e a convex
arc contained in a rectangle of size ε × m, m > 2kn (see Figure 9), the minimum weight
perfect matching for R remains the same. Suppose now that on the same convex curve we
place 4n points labeled p1, q1, p2, p3, q2, q3, p4, ..., p2n−1, q2n−2, q2n−1, p2n, q2n, again any two of
them at distance 1, then the minimum weight perfect matchings for R = {p1, ..., p2n} and
S = {q1, ..., q2n} intersect exactly 2n − 1 times, see Figure 9.
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Figure 9:

Finally place n = 2kr points on C such that any two consecutive points of our point set
are at distance 1. Color them in such a way that their colors follow the next sequence of
numbers:

1, 2, 3, ..., k, 1, 1, 2, 2, 3, 3, ..., k, k, ..., 1, 1, 2, 2, 3, 3, ..., k, k, 1, 2, 3, ..., k

in such a way that for every i there are exactly 2r points with color i. It is easy to verify that
for every pair of numbers 1 ≤ i < j ≤ k the edges of the minimum weight perfect matchings
of the point sets containing the points colored i and j respectively intersect 2r − 1 times.
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