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Abstract

If G is a minimally 3-connected graph and C' is a double cover of
the set of edges of G by irreducible walks, then |E (G)| > 2|C| — 2.
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1 Introduction

A walk o in a simple graph G is a sequence wq, w1, . . ., w, of vertices of G,
not necessarily different, such that w;_jw; is an edge of G for i =1,2,...,s.
An edge e of G is said to be traversed in a walk « if its vertices are consecutive
in a; an edge may be traversed more than once in a given walk.

A walk a in a graph G is irreducible if a # b for every pair a, b of edges
which are traversed consecutively in a. A set C of irreducible closed walks
in a graph G is a walk double cover of G if each edge of G is traversed exactly
two times, either once in two different walks in C' or twice in the same walk
in C.

For any simple graph G and any edge e = uv of G we denote by G —e the
graph obtained from G by deleting the edge e, and by G - e the simple graph
obtained from G by identifying the vertices u and v and deleting loops and
multiple edges. A minimally 3-connected graph is a 3-connected graph G
such that, for every edge e of GG, the graph G — e is no longer 3-connected.

Whenever possible we follow the terms and notation given in [1]. A wheel
W is a graph with ¢ 4 1 vertices, obtained from a cycle C; with ¢ vertices
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by adding a new vertex w adjacent to each vertex in C;. The cycle Cy and
the vertex w are called the rim and the hub of W}, respectively. In this note
we prove the following result.

Theorem 1.1. Let G be a minimally 3-connected graph with m edges. If
C is a walk double cover of G with k walks, then m > 2k — 2. Moreover if
m < 2k — 1, then G is a planar graph and C' is the set of planar faces of G;
in particular if m = 2k — 2, then G is a wheel.

2 Proof of Theorem 1

The following result due to R. Halin [2] will be used in the proof of Theorem
1.

Theorem 2.1. If e = wv is an edge of a minimally 3-connected graph G
with min{d (u) ,d (v)} > 4, then e lies in no cycle of G of length 3 and G - e
s also minimally 3-connected.

For any graph G and any walk double cover C' of G, we denote by m (G)
and by k(C) the number of edges of G and the number of walks in C,
respectively.

Remark 1. Let G be a 3-connected graph and C be a walk double cover of
G. If two edges uw and wv are consecutive edges in two walks in C, then
the degree of w is at least 4.

Proof of Theorem 1. The smallest 3-connected graph is the wheel W3
which is planar and has 6 edges. Since each irreducible walk has at least 3
edges, no walk double cover of W3 has more than 4 walks. Moreover, the
only walk double cover of W3 with 4 walks consists of the planar faces of
Ws.

We proceed by induction assuming m > 7 and that the result holds for
every minimally 3-connected graph with less than m edges.

If G has an edge e = wv with min{d (u),d(v)} > 4, then by Halin’s
theorem, G - e is also minimally 3-connected. Let C' - e denote the set of k
walks of G - e obtained from the walks in C' by contracting the edge e.

Also by Halin’s theorem, the edge e lies in no cycle of G of length 3; this
implies that all walks in C - e are irreducible. Because C' is a walk double
cover of G and e is not an edge of G - e, C - e is a walk double cover of
G - e. By induction, m (G - e) > 2k (C - e) — 2; therefore m > 2k — 1, since
m(G-e)=m—1and k(C-e) =k.



If m = 2k — 1, then m (G -e) = 2k (C - e) — 2; by induction G - e is a
wheel W; and C - e is the set of planar faces of W;. Let x be the vertex of
Wy obtained by identifying v and v. Since u and v have degree at least 4 in
G, the vertex x must be the hub of W;; let wg, w1, ..., w;_1 be the rim of
Wt.

Since e is in no cycle of G of length 3, G is a graph consisting of the cycle
wo, w1, - - ., Wi—1, the two adjacent vertices u and v, and one edge joining each
vertex w; to either u or v.

Suppose there are distinct integers a, b and ¢ such that wg, wyy1 and w,
are adjacent to u in G and wq41, wp and wey1 are adjacent to v in G. The
walks wq, T, Wat1, Wy, T, wpr1 and we, , we+1 lie in C| since they are faces
of G -e. This implies that wq, w, v, Wa+1, Wh, v, U, Wpt1 and We, U, V, Wey1 are
walks in C' which is not possible, since the edge e = uv cannot lie in three
walks in C.

Therefore there are integers ¢ and j such that w;, wii1,...,w;_1 are
adjacent to v in G and wj, wj41,...,w;—1 are adjacent to v in G. This
shows that G is a planar graph.

Since C' - e is the set of faces of G-e = W, and each walk in C' - ¢ is either
a walk in C or is obtained from a walk in C' by contracting the edge e, the
set C' must be the set of faces of G .

We can now assume that each edge of G has at least one end with degree
3. If C contains no cycle of length 3, then 2m > 4k and m > 2k. Therefore
we can also assume that C contains at least one cycle of length 3. Let C5
be the set of cycles in C' of length 3; two cases are considered.

Case 1.- There is a cycle « in Cg such that no pair of edges of « are
traversed consecutively in any other walk in C.

Let u, v and w be the vertices of a. Since each edge of G has an end with
degree 3, without loss of generality, we can assume dg (u) = dg (v) = 3. Let
u1 and vy denote the third vertex of G adjacent to u and the third vertex
of G adjacent to v, respectively; notice that uy # v, since G is 3-connected
and has at least 5 vertices.

Subcase 1.1.- If dg (w) = 3, let wy denote the third vertex of G adjacent to w;
as above u; # wy # v1. Let G’ be the graph obtained from G by contracting
the cycle a to a single point . We claim that G’ can also be obtained from
G by a delta to wye transformation (see Figure 1), and therefore it is also
a 3-connected graph.

Since dgr (x) = 3 and dg (2) = dg (2) for each vertex z # x of G', every
edge of G’ has an end with degree 3; therefore G’ is minimally 3-connected.

Let C’ be the set of k — 1 walks of G’ obtained from the walks in C\ {a}
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Figure 1:

by contracting the edges wv, vw and wu. Since no pair of edges of a are
consecutive edges in any walk in C\ {a}, all walks in C’ are irreducible.
Moreover, C' is a walk double cover of G’, since C is a walk double cover of
G and uv, vw and wu are not edges of G’.

By induction m (G”") > 2k (C")—2; hence m > 2k—1, since m (G') = m—3
and k(C") = k— 1. If m = 2k — 1, then m (G') = 2k (C’) — 2. Again by
induction G - e is a wheel W; and C’ is the set of planar faces of W;. Since
x has degree 3 in G’, we can assume without loss of generality that x lies in
the rim of G’ = W; and that w; is the hub; this implies that G is a graph
as in Figure 2 and therefore it is a planar graph in which « is a face.

Figure 2:

Since C is the set of faces of G’ and every walk in C’ is either a walk
in C\ {a} or is obtained from a walk in C'\ {a} by contracting some of the
edges uv, vw and wu, the set C' must be the set of planar faces of G.
Subcase 1.2.- If dg (w) > 4, we consider the graph G - uv. We claim that u
and v cannot be contained in a 3-vertex cut of G and, therefore, G - uv is 3
connected.

Since dg.yw (x) = 3 and dg.uy (2) < dg (2) for each vertex z # x of G - uv,
every edge of GG - uv has an end with degree 3; therefore G - uv is minimally



3-connected.

Let C - uv be the set of £ — 1 walks of G - uv obtained from the walks
in C\ {a} by contracting the edge uv to a vertex x and substituting each
of the edges uw and vw by the edge zw. Each walk in C - uv is irreducible,
because no pair of edges of « are traversed consecutively in any other walk
in C'. Since C is a walk double cover of G and uv is not an edge of G - uv,
the set C' - uv is a walk double cover of G - uv.

By induction m (G - uv) > 2k (C -wuv) — 2; hence m > 2k — 2, since
m(G-uv)=m-—2and k(C-w)=k—1. If m < 2k—1, then m (G - wv) <
2k (C - wv) — 1; again by induction, G - uv is a planar graph and C'- uv is the
set of planar faces of G - uv.

Since G - uv is 3-connected, there is a planar drawing G - uv of G - wv in
which z is an interior vertex. Let R be the region formed by the three faces
of G - uv in which x is a vertex. Since w, u; and v; lie in the boundary of R
and z is in the interior of R, a planar drawing G of G can be obtained from
G - uv by replacing (within the interior of R) the vertex = with two adjacent
vertices u and v, and the edges wx, uix and vix with the edges wu, wv, uiu
and v1v as in Figure 3.
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Figure 3:

Therefore G is a planar graph and « is a face of G. Furthermore, C is
the set of faces of GG, since C' - uv is the set of planar faces of G - uv and
each walk in C' - wv is either a walk in C\ {a} or is obtained from a walk in
C\ {a} by contracting the edge uv to the vertex x and substituting each of
the edges uw and vw by the edge zw.

If m = 2k — 2, then m (G - w) = 2k (C - uv) — 2; again by induction,
G - uv is a wheel W;. Since dg.u () = 3, we can assume that z lies in the
rim of G - uv.

If w is the hub of G - uv, then G is the wheel Wy, also with hub w. If
u is the hub of G- uv, then G is a graph as in Figure 4. Notice that if ¢ > 3,
then G — wyw is 3-connected which is not possible since G is minimally 3-



connected. Therefore t = 3 and G is the wheel W with hub w. Analogously,
if v1 is the hub of G - uv, then G is the wheel Wjy.

Figure 4:

Case 2.- For every cycle a € Cg there is walk o, # a in C such that two
edges of « are traversed consecutively in oq.

For this case, we shall prove that the average length of the walks in C' is
at least 4 and therefore 2m > 4k and m > 2k.

For each a € C3 let uq, w, and v, denote the vertices of . Without loss
of generality we assume that u,w, and w,v, are traversed consecutively in
0. Notice that the walk o, is uniquely determined since C' is a walk double
cover of G.

By Remark 1, dg (wy) > 4; therefore dg (uq) = dg (va) = 3, since every
edge of G has an end with degree 3. Let u/, and v/, denote the third vertex
of G adjacent to u, and the third vertex of G adjacent to v,, respectively.

Again by Remark 1, the edges wau, and u,v, are not traversed con-
secutively in o,; therefore o, must traverse the edge uyul,; analogously o,
traverses the edge vovl,. If u), = v/, then u, and v, are adjacent only to
u, = vl, to wy and to each other which is not possible since G is a 3-
connected graph with at least 5 vertices; therefore o, has length at least 5
for each av € C3. For each 7 € C' let [ (1) denote the length of 7.

Consider the equivalence relation in Cs given by § ~ « if and only if
og = 0. For a € O3 let [a] denote the equivalence class of a.

Let # and 7 be two distinct cycles in [a] and assume, without loss of
generality, that the edges ugwg, wgvg, uyw, and wyv, are traversed in o,
= 03 = 0, in that relative order. The edges ugwg and wgvg are not edges
of v since they are traversed in 3 and by og # [3; analogously u,w, and
w4 v, are not edges of (3.

Suppose that wgvg and u,w, are traversed consecutively in o,. Then
vg = u, and wg # w,, since o, is an irreducible walk. Moreover, ug = vy



since dg (vg = uy) = 3 and wg, wy, ug and vy are all adjacent to vz = u,.
This implies that the vertices vg = u, and ug = v, are adjacent in G only
to wg, to wy and to each other which is not possible since G'is 3-connected
and has at least 5 vertices.

Therefore, no edges of two distinct cycles in [a] are traversed consecu-
tively in o,. This implies that o, has at least 3|[«]| edges.

By the above arguments
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for each o € C'3 with |[a]| > 2.
Since all walks in C' which are not in C3 have length at least 4, the
average length in C' must also be at least 4.

Corollary 2.2. Let G be a minimally 3-connected graph with n vertices. If
C' is a walk double cover of G with k walks, then k < 3”3;4.

Proof. Let m denote the number of edges in G. W. Mader proved in [3] that

m < 3n — 6; by Theorem 1, k < m;Q < (3”_26)+2 = 3”2_4. O

Corollary 2.3. If G is a minimally 3-connected planar graph with n ver-
tices, then G has at most n faces. Moreover if G has exactly n faces, then
G is a wheel.

Proof. Since GG is 3-connected, its set of faces is a walk double cover. By
Theorem 1, m > 2r — 2, where m and r are the number of edges and faces
of G, respectively. Since n —m + r = 2, it follows r < n.

Also by Theorem 1, if G is not a wheel, then m > 2r — 1, in which case
r<n-—1. O

Corollary 2.4. If G is a minimally 3-connected graph with n vertices em-
bedded in a closed surface S with Fuler characteristic x # 2, then G has at
most n — x faces.

Proof. As in Corollary 4, the set of faces of G is a walk double cover of
G. Since S is not the sphere, C' is not the set of planar faces of G. By
Theorem 1, m > 2r, where m and r are the number of edges and faces of
G, respectively. Since x = n —m + r, it follows r < n — . ]
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