A note on minimally 3-connected graphs*

Víctor Neumann-Lara¹ Eduardo Rivera-Campo² Jorge Urrutia¹

Abstract

If G is a minimally 3-connected graph and C is a double cover of the set of edges of G by irreducible walks, then $|E(G)| \ge 2|C| - 2$.

Keywords: Minimally 3-connected, walk double cover. AMS Subject classification codes: primary 05C70, secondary 05C38

1 Introduction

A walk α in a simple graph G is a sequence w_0, w_1, \ldots, w_s of vertices of G, not necessarily different, such that $w_{i-1}w_i$ is an edge of G for $i = 1, 2, \ldots, s$. An edge e of G is said to be traversed in a walk α if its vertices are consecutive in α ; an edge may be traversed more than once in a given walk.

A walk α in a graph G is *irreducible* if $a \neq b$ for every pair a, b of edges which are traversed consecutively in α . A set C of irreducible closed walks in a graph G is a walk double cover of G if each edge of G is traversed exactly two times, either once in two different walks in C or twice in the same walk in C.

For any simple graph G and any edge e = uv of G we denote by G - e the graph obtained from G by deleting the edge e, and by $G \cdot e$ the simple graph obtained from G by identifying the vertices u and v and deleting loops and multiple edges. A minimally 3-connected graph is a 3-connected graph G such that, for every edge e of G, the graph G - e is no longer 3-connected.

Whenever possible we follow the terms and notation given in [1]. A wheel W_t is a graph with t + 1 vertices, obtained from a cycle C_t with t vertices

^{*}Partially supported by Conacyt, México.

 $^{^1}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510.

²Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D.F. 09340.

by adding a new vertex w adjacent to each vertex in C_t . The cycle C_t and the vertex w are called the rim and the hub of W_t , respectively. In this note we prove the following result.

Theorem 1.1. Let G be a minimally 3-connected graph with m edges. If C is a walk double cover of G with k walks, then $m \ge 2k - 2$. Moreover if $m \le 2k - 1$, then G is a planar graph and C is the set of planar faces of G; in particular if m = 2k - 2, then G is a wheel.

2 Proof of Theorem 1

The following result due to R. Halin [2] will be used in the proof of Theorem 1

Theorem 2.1. If e = uv is an edge of a minimally 3-connected graph G with min $\{d(u), d(v)\} \ge 4$, then e lies in no cycle of G of length 3 and $G \cdot e$ is also minimally 3-connected.

For any graph G and any walk double cover C of G, we denote by m(G) and by k(C) the number of edges of G and the number of walks in C, respectively.

Remark 1. Let G be a 3-connected graph and C be a walk double cover of G. If two edges uw and wv are consecutive edges in two walks in C, then the degree of w is at least 4.

Proof of Theorem 1. The smallest 3-connected graph is the wheel W_3 which is planar and has 6 edges. Since each irreducible walk has at least 3 edges, no walk double cover of W_3 has more than 4 walks. Moreover, the only walk double cover of W_3 with 4 walks consists of the planar faces of W_3 .

We proceed by induction assuming $m \geq 7$ and that the result holds for every minimally 3-connected graph with less than m edges.

If G has an edge e = uv with min $\{d(u), d(v)\} \ge 4$, then by Halin's theorem, $G \cdot e$ is also minimally 3-connected. Let $C \cdot e$ denote the set of k walks of $G \cdot e$ obtained from the walks in C by contracting the edge e.

Also by Halin's theorem, the edge e lies in no cycle of G of length 3; this implies that all walks in $C \cdot e$ are irreducible. Because C is a walk double cover of G and e is not an edge of $G \cdot e$, $C \cdot e$ is a walk double cover of $G \cdot e$. By induction, $m(G \cdot e) \geq 2k(C \cdot e) - 2$; therefore $m \geq 2k - 1$, since $m(G \cdot e) = m - 1$ and $k(C \cdot e) = k$.

If m = 2k - 1, then $m(G \cdot e) = 2k(C \cdot e) - 2$; by induction $G \cdot e$ is a wheel W_t and $C \cdot e$ is the set of planar faces of W_t . Let x be the vertex of W_t obtained by identifying u and v. Since u and v have degree at least 4 in G, the vertex x must be the hub of W_t ; let $w_0, w_1, \ldots, w_{t-1}$ be the rim of W_t .

Since e is in no cycle of G of length 3, G is a graph consisting of the cycle $w_0, w_1, \ldots, w_{t-1}$, the two adjacent vertices u and v, and one edge joining each vertex w_i to either u or v.

Suppose there are distinct integers a, b and c such that w_a , w_{b+1} and w_c are adjacent to u in G and w_{a+1} , w_b and w_{c+1} are adjacent to v in G. The walks w_a , x, w_{a+1} , w_b , x, w_{b+1} and w_c , x, w_{c+1} lie in C, since they are faces of $G \cdot e$. This implies that w_a , u, v, w_{a+1} , w_b , v, u, w_{b+1} and w_c , u, v, w_{c+1} are walks in C which is not possible, since the edge e = uv cannot lie in three walks in C.

Therefore there are integers i and j such that $w_i, w_{i+1}, \ldots, w_{j-1}$ are adjacent to u in G and $w_j, w_{j+1}, \ldots, w_{i-1}$ are adjacent to v in G. This shows that G is a planar graph.

Since $C \cdot e$ is the set of faces of $G \cdot e = W_t$ and each walk in $C \cdot e$ is either a walk in C or is obtained from a walk in C by contracting the edge e, the set C must be the set of faces of G.

We can now assume that each edge of G has at least one end with degree 3. If C contains no cycle of length 3, then $2m \geq 4k$ and $m \geq 2k$. Therefore we can also assume that C contains at least one cycle of length 3. Let C_3 be the set of cycles in C of length 3; two cases are considered.

Case 1.- There is a cycle α in C_3 such that no pair of edges of α are traversed consecutively in any other walk in C.

Let u, v and w be the vertices of α . Since each edge of G has an end with degree 3, without loss of generality, we can assume $d_G(u) = d_G(v) = 3$. Let u_1 and v_1 denote the third vertex of G adjacent to u and the third vertex of G adjacent to v, respectively; notice that $u_1 \neq v_1$, since G is 3-connected and has at least 5 vertices.

Subcase 1.1.- If $d_G(w) = 3$, let w_1 denote the third vertex of G adjacent to w; as above $u_1 \neq w_1 \neq v_1$. Let G' be the graph obtained from G by contracting the cycle α to a single point x. We claim that G' can also be obtained from G by a delta to wye transformation (see Figure 1), and therefore it is also a 3-connected graph.

Since $d_{G'}(x) = 3$ and $d_{G'}(z) = d_G(z)$ for each vertex $z \neq x$ of G', every edge of G' has an end with degree 3; therefore G' is minimally 3-connected.

Let C' be the set of k-1 walks of G' obtained from the walks in $C \setminus \{\alpha\}$

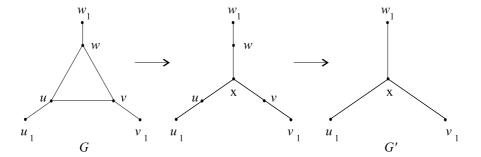


Figure 1:

by contracting the edges uv, vw and wu. Since no pair of edges of α are consecutive edges in any walk in $C \setminus \{\alpha\}$, all walks in C' are irreducible. Moreover, C' is a walk double cover of G', since C is a walk double cover of G and uv, vw and wu are not edges of G'.

By induction $m(G') \ge 2k(C')-2$; hence $m \ge 2k-1$, since m(G') = m-3 and k(C') = k-1. If m = 2k-1, then m(G') = 2k(C')-2. Again by induction $G \cdot e$ is a wheel W_t and C' is the set of planar faces of W_t . Since x has degree 3 in G', we can assume without loss of generality that x lies in the rim of $G' = W_t$ and that w_1 is the hub; this implies that G is a graph as in Figure 2 and therefore it is a planar graph in which α is a face.

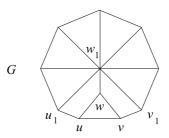


Figure 2:

Since C' is the set of faces of G' and every walk in C' is either a walk in $C \setminus \{\alpha\}$ or is obtained from a walk in $C \setminus \{\alpha\}$ by contracting some of the edges uv, vw and wu, the set C must be the set of planar faces of G. Subcase 1.2.- If $d_G(w) \geq 4$, we consider the graph $G \cdot uv$. We claim that u and v cannot be contained in a 3-vertex cut of G and, therefore, $G \cdot uv$ is 3 connected.

Since $d_{G \cdot uv}(x) = 3$ and $d_{G \cdot uv}(z) \le d_G(z)$ for each vertex $z \ne x$ of $G \cdot uv$, every edge of $G \cdot uv$ has an end with degree 3; therefore $G \cdot uv$ is minimally

3-connected.

Let $C \cdot uv$ be the set of k-1 walks of $G \cdot uv$ obtained from the walks in $C \setminus \{\alpha\}$ by contracting the edge uv to a vertex x and substituting each of the edges uw and vw by the edge xw. Each walk in $C \cdot uv$ is irreducible, because no pair of edges of α are traversed consecutively in any other walk in C. Since C is a walk double cover of G and uv is not an edge of $G \cdot uv$, the set $C \cdot uv$ is a walk double cover of $G \cdot uv$.

By induction $m\left(G\cdot uv\right)\geq 2k\left(C\cdot uv\right)-2$; hence $m\geq 2k-2$, since $m\left(G\cdot uv\right)=m-2$ and $k\left(C\cdot uv\right)=k-1$. If $m\leq 2k-1$, then $m\left(G\cdot uv\right)\leq 2k\left(C\cdot uv\right)-1$; again by induction, $G\cdot uv$ is a planar graph and $C\cdot uv$ is the set of planar faces of $G\cdot uv$.

Since $G \cdot uv$ is 3-connected, there is a planar drawing $\overline{G \cdot uv}$ of $G \cdot uv$ in which x is an interior vertex. Let R be the region formed by the three faces of $\overline{G \cdot uv}$ in which x is a vertex. Since w, u_1 and v_1 lie in the boundary of R and x is in the interior of R, a planar drawing \overline{G} of G can be obtained from $\overline{G \cdot uv}$ by replacing (within the interior of R) the vertex x with two adjacent vertices u and v, and the edges v, v, v, v and v, v as in Figure 3.

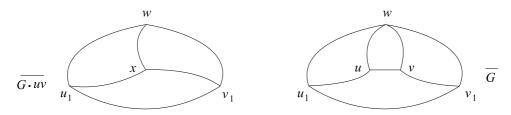


Figure 3:

Therefore G is a planar graph and α is a face of G. Furthermore, C is the set of faces of G, since $C \cdot uv$ is the set of planar faces of $G \cdot uv$ and each walk in $C \cdot uv$ is either a walk in $C \setminus \{\alpha\}$ or is obtained from a walk in $C \setminus \{\alpha\}$ by contracting the edge uv to the vertex x and substituting each of the edges uw and vw by the edge xw.

If m = 2k - 2, then $m(G \cdot uv) = 2k(C \cdot uv) - 2$; again by induction, $G \cdot uv$ is a wheel W_t . Since $d_{G \cdot uv}(x) = 3$, we can assume that x lies in the rim of $G \cdot uv$.

If w is the hub of $G \cdot uv$, then G is the wheel W_{t+1} , also with hub w. If u_1 is the hub of $G \cdot uv$, then G is a graph as in Figure 4. Notice that if t > 3, then $G - u_1w$ is 3-connected which is not possible since G is minimally 3-

connected. Therefore t = 3 and G is the wheel W_4 with hub w. Analogously, if v_1 is the hub of $G \cdot uv$, then G is the wheel W_4 .

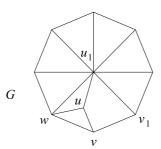


Figure 4:

Case 2.- For every cycle $\alpha \in C_3$ there is walk $\sigma_{\alpha} \neq \alpha$ in C such that two edges of α are traversed consecutively in σ_{α} .

For this case, we shall prove that the average length of the walks in C is at least 4 and therefore $2m \ge 4k$ and $m \ge 2k$.

For each $\alpha \in C_3$ let u_{α} , w_{α} and v_{α} denote the vertices of α . Without loss of generality we assume that $u_{\alpha}w_{\alpha}$ and $w_{\alpha}v_{\alpha}$ are traversed consecutively in σ_{α} . Notice that the walk σ_{α} is uniquely determined since C is a walk double cover of G.

By Remark 1, $d_G(w_\alpha) \ge 4$; therefore $d_G(u_\alpha) = d_G(v_\alpha) = 3$, since every edge of G has an end with degree 3. Let u'_α and v'_α denote the third vertex of G adjacent to u_α and the third vertex of G adjacent to v_α , respectively.

Again by Remark 1, the edges $w_{\alpha}u_{\alpha}$ and $u_{\alpha}v_{\alpha}$ are not traversed consecutively in σ_{α} ; therefore σ_{α} must traverse the edge $u_{\alpha}u'_{\alpha}$; analogously σ_{α} traverses the edge $v_{\alpha}v'_{\alpha}$. If $u'_{\alpha} = v'_{\alpha}$, then u_{α} and v_{α} are adjacent only to $u'_{\alpha} = v'_{\alpha}$, to w_{α} and to each other which is not possible since G is a 3-connected graph with at least 5 vertices; therefore σ_{α} has length at least 5 for each $\alpha \in C_3$. For each $\tau \in C$ let $l(\tau)$ denote the length of τ .

Consider the equivalence relation in C_3 given by $\beta \sim \gamma$ if and only if $\sigma_{\beta} = \sigma_{\gamma}$. For $\alpha \in C_3$ let $[\alpha]$ denote the equivalence class of α .

Let β and γ be two distinct cycles in $[\alpha]$ and assume, without loss of generality, that the edges $u_{\beta}w_{\beta}$, $w_{\beta}v_{\beta}$, $u_{\gamma}w_{\gamma}$ and $w_{\gamma}v_{\gamma}$ are traversed in $\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma}$ in that relative order. The edges $u_{\beta}w_{\beta}$ and $w_{\beta}v_{\beta}$ are not edges of γ since they are traversed in β and by $\sigma_{\beta} \neq \beta$; analogously $u_{\gamma}w_{\gamma}$ and $w_{\gamma}v_{\gamma}$ are not edges of β .

Suppose that $w_{\beta}v_{\beta}$ and $u_{\gamma}w_{\gamma}$ are traversed consecutively in σ_{α} . Then $v_{\beta} = u_{\gamma}$ and $w_{\beta} \neq w_{\gamma}$, since σ_{α} is an irreducible walk. Moreover, $u_{\beta} = v_{\gamma}$

since $d_G(v_\beta = u_\gamma) = 3$ and w_β , w_γ , u_β and v_γ are all adjacent to $v_\beta = u_\gamma$. This implies that the vertices $v_\beta = u_\gamma$ and $u_\beta = v_\gamma$ are adjacent in G only to w_β , to w_γ and to each other which is not possible since G is 3-connected and has at least 5 vertices.

Therefore, no edges of two distinct cycles in $[\alpha]$ are traversed consecutively in σ_{α} . This implies that σ_{α} has at least $3|[\alpha]|$ edges.

By the above arguments

$$\frac{l(\sigma_{\alpha}) + l(\alpha)}{2} \ge \frac{5+3}{2} = 4$$

for each $\alpha \in C_3$ with $|[\alpha]| = 1$, and

$$\frac{l(\sigma_{\alpha}) + \sum_{\beta \in [\alpha]} l(\beta)}{||\alpha|| + 1} \ge \frac{3|[\alpha]| + 3|[\alpha]|}{||\alpha|| + 1} = \frac{6|[\alpha]|}{||\alpha|| + 1} \ge 4$$

for each $\alpha \in C_3$ with $|[\alpha]| \geq 2$.

Since all walks in C which are not in C_3 have length at least 4, the average length in C must also be at least 4.

Corollary 2.2. Let G be a minimally 3-connected graph with n vertices. If C is a walk double cover of G with k walks, then $k \leq \frac{3n-4}{2}$.

Proof. Let m denote the number of edges in G. W. Mader proved in [3] that $m \leq 3n-6$; by Theorem 1, $k \leq \frac{m+2}{2} \leq \frac{(3n-6)+2}{2} = \frac{3n-4}{2}$.

Corollary 2.3. If G is a minimally 3-connected planar graph with n vertices, then G has at most n faces. Moreover if G has exactly n faces, then G is a wheel.

Proof. Since G is 3-connected, its set of faces is a walk double cover. By Theorem 1, $m \ge 2r - 2$, where m and r are the number of edges and faces of G, respectively. Since n - m + r = 2, it follows $r \le n$.

Also by Theorem 1, if G is not a wheel, then $m \geq 2r - 1$, in which case $r \leq n - 1$.

Corollary 2.4. If G is a minimally 3-connected graph with n vertices embedded in a closed surface S with Euler characteristic $\chi \neq 2$, then G has at most $n - \chi$ faces.

Proof. As in Corollary 4, the set of faces of G is a walk double cover of G. Since S is not the sphere, C is not the set of planar faces of G. By Theorem 1, $m \geq 2r$, where m and r are the number of edges and faces of G, respectively. Since $\chi = n - m + r$, it follows $r \leq n - \chi$.

References

- [1] J. A. Bondy, U. S. R. Murty, *Graph Theory with Applications*, North Holland, 1981.
- [2] R. Halin, Untersuchungen über minimale n-fach zusammenhängende Graphen, $Math.\ Ann.\ 182,\ 1969,\ 175–188.$
- [3] W. Mader, Minimale *n*-fach zusammenhängende Graphen mit maximaler Kantenzahl, *J. Reine Angew. Math.* **249**, 1971, 201-207.