
Simultaneous edge flipping in triangulations

J. Galtier1 F. Hurtado2 M. Noy2 S. Pérennes3 J. Urrutia4

Abstract

We generalize the operation of flipping an edge in a triangulation to that of flipping
several edges simultaneously. Our main result is an optimal upper bound on the number of
simultaneous flips that are needed to transform a triangulation into another. Our results
hold for triangulations of point sets and for polygons.

1 Introduction

Given a triangulation T of a set P of points in the plane, an edge e of T is flippable if it is
incident to two triangles whose union is a convex quadrilateral C. By flipping e we mean the
operation of removing e from T and replacing it by the other diagonal of C. In this way we
obtain a new triangulation T ′ of P , and we say that T ′ has been obtained from T by means of
a flip.

Local transformations on triangulations such as flips have been used in various fields starting
with a simple greedy algorithm by Lawson that constructs the Delaunay triangulation of a point
set by successive flips from an arbitrary initial triangulation of the point set (see [9]). Their
main characteristic is to change incrementally the mesh towards something of better quality. For
instance, local changes are used in compression (or simplification) techniques for visualization
[17]. An evolving triangulation may be associated with different types of physical data, that
require to be smoothly adapted to a new topology [6]. When one of the fields associated to
the vertices is height, then changes in the triangulation may be suitable in order to keep some
quality measures of the mesh [7]. On the other hand, finite-element applications often associate
some aspect ratio to a mesh, that can be improved by flipping operations [12, pages 240-247].
Topology changes occur when the measure taken is non-isotropic [11] and the computation is
adaptive [3].

From a different point of view, we remark the existence of a bijection between triangulations
of a convex (n + 2)-gon and binary trees with n internal nodes. Under this bijection, flipping
an edge in a triangulation corresponds precisely to a rotation in the corresponding binary tree
[18, 13]. Finally, we note that the flip operation is also applied to triangulations in higher
dimensions or to topological triangulations [1, 2, 8, 15, 16, 19].

In a previous paper [14], the authors studied several questions about flips in triangulations,
mainly the question of how many flips are needed to transform a triangulation of a plane point
set (or of a simple polygon) into another triangulation. Among other results, it was shown that
two triangulations of a set of n points (or of a simple polygon with n vertices) in the plane
are at most O(n2) flips apart, and that this bound can be made sensitive to some geometric
characteristics. Moreover, pairs of triangulations were produced where Ω(n2) flips are necessary,
both for simple polygons and for point sets.
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It seems natural to go one step further and to allow several edges to be flipped simultaneously,
or in parallel. For this operation to make sense the edges must be independent in the sense that
no two of them can be sides of the same triangle. Let us call this operation a simultaneous flip or
a parallel flip. Then it is reasonable to expect that allowing parallel flips as a primitive operation
the above O(n2) bound can be decreased substantially. The main purpose of this paper is to
show that this is indeed the case.

The parallel flip problem can be addressed in two different ways. In the first one, a central-
ized controller computes the flips that have to be performed. The cost of this computation is
considered as irrelevant and we measure the complexity only in terms of the number of parallel
flips required. In the second one there is no central control, the triangulation evolves in a dis-
tributed manner, and the decision to perform a flip or not must be driven by local information.
In this paper we show how to solve optimally the controlled problem.

We first prove that one can transform any triangulation of a convex n-gon into any other
one with at most O(log n) parallel flips, and that this bound is tight. We remark that when
translated in terms of binary trees, this result means that one can transform any binary tree
into any other one using at most O(log n) “parallel rotations”, a fact of independent interest.

For triangulations of general polygons and point sets we obtain an optimal upper bound of
O(n) parallel flips. The lower bound Ω(n) will follow from a construction in [14].

Our last result is that every triangulation of a set of n points contains a set of (n − 4)/6
edges that can be flipped in parallel, and that there are triangulations in which at most (n−4)/5
edges can be flipped in parallel. In [14] it was proved that every triangulation contains at least
(n− 4)/2 flippable edges.

The organization of the paper is as follows. In Section 2 we state and discuss in detail the
results of the paper. Proofs are given in Section 3.

2 Results

The following definitions apply both to triangulations of polygons and to triangulations of point
sets. An edge e and a triangle t of a triangulation are said to be incident if e is one of the sides
of t. Two edges e and f of a triangulation T are called flip-independent if no triangle of T is
incident to both e and f . A set E of edges is called flippable if every edge of E is flippable (in
the ordinary sense) and if they are pairwise flip-independent. Finally, given a flippable set E,
the operation of flipping E consists of flipping simultaneously all the edges of the set. This gives
rise to a new triangulation T ′, and we say that T ′ has been obtained from T by means of a
simultaneous flip or a parallel flip (see Figure 1 for an example). Observe that because of the
assumption of flip-independence, the operation is well defined. In particular, it does not matter
in which order the edges of E are flipped when considered as sequential flips. Observe also that
ordinary flips are a particular case of parallel flips.

By introducing a diagonal e into a triangulation T we mean to perform a sequence of flips
starting from T until e is one of the edges in the current triangulation.

T T’

Figure 1: Flipping in parallel the set of thick edges of T produces T ′.
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Our first result deals with convex polygons. Let us mention that, in the case of a convex
n-gon, O(n) ordinary flips always suffice to transform one triangulation into another (this is
easy to prove, the hard problem is to determine the exact value for the maximum number of
ordinary flips required [18]).

Theorem 1 Any triangulation of a convex n-gon can be transformed into any other triangula-
tion using at most O(log n) parallel flips, and this bound is tight.

Besides its geometric content, this result can be translated into the language of binary trees,
where parallel flips correspond to parallel rotations, that is, several rotations that take place
without conflict simultaneously. While Ω(n) (sequential) rotations are eventually necessary to
transform a binary tree into another one [18], Theorem 1 means that O(log n) parallel rotations
are always sufficient.

Next we turn to triangulations of arbitrary polygons. We have already mentioned the example
given in [14] of two triangulations of a polygon that are Ω(n2) ordinary flips apart. Since a
triangulation has a linear number of edges, this implies that the two triangulations are at least
Ω(n) parallel flips apart. In order to obtain a matching upper bound the main ingredient is the
following result, whose proof requires a series of technical lemmas. We recall that a vertex v of
a polygon is called convex when the internal angle at v is smaller than π, and is called concave
or reflex otherwise.

Proposition 1 Let T be a triangulation of a simple polygon Qn and let e be a diagonal not in
T . Then e can be introduced in T with at most O(n log c) parallel flips, where c is the number
of convex vertices in Qn.

Now come the two main results of the paper.

Theorem 2 Any triangulation T of a simple polygon Qn can be transformed into any other
triangulation T ′ using at most O(n) parallel flips, and this bound is tight.

From this we can deduce the same result for triangulations of points sets. We remark that
again the example of triangulations at (sequential) quadratic distance shows that Ω(n) is a lower
bound.

Theorem 3 Any triangulation T of a set Pn of n points on the plane can be transformed into
any other triangulation T ′ using at most O(n) parallel flips, and this bound is tight.

Finally, in the above mentioned paper [14], it was proved that any triangulation of a set of
n points contains at least (n − 4)/2 edges that can be flipped. Here we present an analogous
result for parallel flips.

Theorem 4 Every triangulation T of a set Pn of n points on the plane contains a set of at least
(n− 4)/6 edges of T that can be flipped in parallel. Also, for every n there exists a triangulation
of a set of n points in which at most (n− 4)/5 edges can be flipped in parallel.

3 Proofs

The proof of Theorem 1 requires some preliminaries. Given a triangulation T of a convex
polygon, its dual tree T̂ is defined as the dual graph of T excluding the unbounded face (see

Fig. 2, top left, where the dual tree is shown with dashed edges). The leaves of T̂ correspond to
the ears of T , that is, to vertices of the polygon such that its two neighbors are adjacent in T .
The diameter of T̂ is the maximum distance between two nodes of T̂ . Finally, a triangulation
is called a fan if there is a vertex v of the polygon adjacent to all the other vertices; v is called
the apex of the fan.
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Lemma 1 Let T be any triangulation of a convex polygon such that the diameter of T̂ is k, and
let v be any vertex. Then T can be transformed into the fan with apex v using at most k parallel
flips.

Proof. Let e be an edge of T not incident with v. The distance from v to e is defined to be the
number of edges of T intersected by any line segment joining any interior point of e to v, plus
one (see Fig. 2, top left), and is at most k by hypothesis. Equivalently, consider the diagonals
not incident with v: those which are visible from v get distance 1, when they are all flipped
(and hence become incident with v) the new set of visible diagonals get distance 2, and so on.
By construction the edges at distance i can be flipped in parallel once all edges at distances
1, . . . , i− 1 have been previously flipped in this order, therefore if we flip at step i all the edges
at distance i, we reach the fan with apex v using at most k parallel flips (see Fig. 2). 2
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Figure 2: Transforming a triangulation into a fan.

Lemma 2 Let T be a triangulation of a convex n-gon. Then with at most two parallel flips one
can tranform T into a triangulation having at least n/6 ears.

Proof. The vertices of the dual tree of a triangulation have degrees 1, 2 or 3. The goal is to
reduce the number of vertices of degree 2 thus increasing those of degree 1, i.e. the leaves, that
correspond to the ears. Consider three consecutive vertices of degree 2 in T̂ . As shown in Fig. 3
with at most two flips one of them can be transformed into a leaf. If T̂ contains long paths
consisting of vertices of degree 2, subdivide them into subpaths of length three, plus a possible
remainder of length one or two. If the remainder is one, it is given to one of the extremes of the
path; if it is two, each one of them is given to one of the two extremes. From the previous remark,
using at most two parallel flips we can eliminate these paths and obtain a new triangulation T1

such that T̂1 contains no paths of length greater than two consisting of vertices of degree 2.
Finally we show that T1 has at least n/6 ears. Substitute every path of vertices of degree 2

in T̂1 by a single edge. Then we obtain a full binary tree having m internal nodes and m + 1
leaves. By construction, every edge of this tree gives raise to at most two vertices of degree 2 in
T̂1. Then T̂1 has m+ 1 leaves out of a total of at most m+ (m+ 1) + 2 · 2m = 6m+ 1 nodes. 2
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Figure 3: With 1 or 2 flips an ear (dashed) and a triangle of degree 3 are created.

Proof of Theorem 1. Let T be a triangulation of a convex n-gon P and let v be any vertex
of P . By Lemma 2 we can transform T into another triangulation T ′ having at least n/6 ears.
Let P ′ be the polygon obtained from P by removing all the ears of T ′ (except those incident
with v). By recursive application of Lemma 2 to the triangulation induced on P ′ by T ′ we obtain
a triangulation T ′′ of P whose dual tree has a logarithmic diameter. By Lemma 1, T ′′ can be
transformed into the fan with apex v. As a consequence T can be transformed with O(log n)
parallel flips into the fan with apex v and the upper bound follows.

Finally we show that the bound is tight. Let S be a triangulation having v as an ear and let
Tv be the fan with apex v. A parallel flip applied to Tv can remove at most half of the edges
incident with v, and this implies that Ω(logn) parallel flips are required to reach S. 2

Our next result, Proposition 1, is technically the most complex and requires a series of three
lemmas.

Lemma 3 Let Qn be a polygon with vertices v1, . . . , vk, . . . , vn such that v1, vk, vk+1 and vn are
the only convex vertices, and such that there exists a line r that crosses the boundary of the
polygon Qn only at sides vkvk+1 and vnv1. Then O(n) parallel flips are sufficient to transform
any triangulation of Qn into any other one.

Proof. For ease of exposition we assume that r is horizontal. Let u0, u1, . . . um be the vertices on
the upper chain, and let l0, l1, . . . , lp be those on the lower chain, in both cases in clockwise order
(see Figure 4a), so that u0, um, l0, lp are the convex vertices. Any triangulation of Qn consists of
m+p triangles, m of them having one side on the upper chain and the third vertex on the lower
chain, and p of them in the opposite way. By ∆i (i = 1, . . . , p) we denote the triangle having
base li−1li. If in some triangulation, the triangle ∆i has vertices li−1liut, then we say that ut is
the top vertex of ∆i.

Define a target triangulation T ∗ as follows. Join vertex um with all the vertices seen by
it from the lower chain, next join um−1 with all the vertices it sees from the lower chain not
joined previously with um, and so on. T ∗ can be described as the triangulation in which the top
vertices of ∆1, . . . ,∆p are as much to the right as possible (Figure 5). It two triangles ∆i+1∆i

share a diagonal, then this diagonal cannot be flipped, and the same applies to two triangles
with base on the upper chain. It may also happen that visibility restrictions do not allow to flip
a diagonal shared by two triangles of different kind.

We define a forward flip as the simultaneous (parallel) flip of all the diagonals that can be
flipped so that the top vertex of every ∆i advances to the right, if this is possible, or remains
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Figure 4: a) Triangulation of Qn. b) Result after applying a forward flip.

where it is if no advance is possible. Figure 4b shows the result of applying a forward flip to
the triangulation in Figure 4a. Observe that a forward flip is uniquely defined at every step,
and that it can always be performed unless the target T ∗ has been reached. This is because
if ∆1, . . . ,∆i−1 are already in their final position, and ∆i is not, the top vertex of ∆i can be
advanced.

Next we show that m + p − 1 forward flips are always enough to reach T ∗ from any trian-
gulation, and this will prove the lemma. More precisely, we show that if initially ut is the top
vertex of ∆i then, with at most m+ i− t−1 forward flips, ∆1, . . . ,∆i reach their final positions.
The proof is by induction on i.

For i = 1 the result is clear, since the top vertex ut of ∆1 can always advance up to its final
position, which is um in the worst case, and this would require m− t = m+ 1− t− 1 flips. Now
assume that the initial top vertex of ∆i is ut and that of ∆i−1 is us, and that by induction the
first m+ i− s− 2 forward flips send ∆1, . . . ,∆i−1 to their final positions. If these flips also take
∆i to its final position we are done, otherwise let’s see how many additional forward flips are
required.

Consider first the case s > t. Let us perform the m+ i− s− 2 forward flips which take the
top vertices of ∆1, . . . ,∆i−1 to their final positions. At each of them three possibilities arise:

• Both the top vertex of ∆i and the top vertex of ∆i−1 advance; in this case the number
of edges which separate them in the upper chain remains the same as it was before the
forward flip;

• the top vertex of ∆i advances one edge but the top vertex of ∆i−1 doesn’t; in this case
the separation decreases by one;

• the top vertex of ∆i−1 advances one edge but the top vertex of ∆i doesn’t. For this to
happen it is necessary that ∆i−1 and ∆i share an edge before the flip, hence in this case
the separation between their top vertices will change from 0 to 1.

Initially the separation between the top vertices of ∆i−1 and ∆i in the upper chain consists
of s − t edges, where s − t ≥ 1. According to the above cases after m + i− s− 2 forward flips
the separation between them is at most s− t. Therefore with at most s− t additional flips ∆i

reaches its final position. The total number of forward flips would be (m+ i− s− 2) + (s− t) =
m+ i− t− 2 < m+ i− t− 1.

In the case s = t, that is, when ∆i and ∆i−1 have the same initial top vertex, we have just
seen that the separation between the top vertices is at most 1 after m+ i− s− 2 forward flips.
Hence, at most (m+ i− s− 2) + 1 = m+ i− s− 1 = m+ i− t− 1 forward flips suffice. 2

Observation 1. We remark that if in the above lemma vk = vk+1 (or u0 = lp in the proof), so
that there are only three convex vertices, the result still applies.
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Figure 5: Target triangulation.

Lemma 4 Let Qn be a polygon with vertices v1, . . . , vp, . . . , vq , . . . , vn such that a) v1, vp, vq , vq+1

and vn are the only convex vertices; b) v1 and vq see each other; c) Qn admits a triangulation
such that all the diagonals cross v1vq. Then O(n) parallel flips are sufficient to introduce the
diagonal v1vq in T .

Proof. For ease of exposition we assume that v1vq is horizontal, vp is above v1vq , and vq+1 and
vn are below it (see Figure 6). At each step of the process we call active polygon the subpolygon
of Qn formed by the union of triangles which cross v1vq in the current triangulation; at the
beginning the active polygon is the whole Qn. Flips will be performed always inside the active
polygon, i. e., at each step the diagonals in the current triangulation of Qn external to the active
polygon are frozen and will not be flipped in the sequel.

All the vertices in the chain vq+1 . . . vn see either vq or v1. Assume that vq+1, . . . , vm see vq,
and vm, . . . , vn see v1. In order to introduce v1vq it is enough to introduce first v1vm and vmvq,
since then in the polygon vmv1 · · · vp · · · vqvm the diagonal v1vq can be introduced with O(n)
flips (even sequential flips, as shown in [14, Lemma 3.1]).

v

v

v
v

vp

q+1

n

qv

vi

1v

t
m

v

v

vp

q+1

n

qv 1v

vt-1

vs

vm

iv
jv

Figure 6: Two possible initial situations in Lemma 4.

If vm is joined in T to vi and vj with 1 ≤ i ≤ p and p ≤ j ≤ q (see Fig. 6, left),
the claim is clear since then Lemma 3 can be applied to polygons v1 · · · vivm · · · vnv1 and
vqvq+1 · · · vmvj · · · vq , and vmv1 and vmvq can be introduced with O(n) parallel flips.

Let us assume that vm is connected to vi (1 ≤ i ≤ p), but not to any vertex in the chain
vi+1 · · · vp · · · vq . Let vt be such that the triangles with bases vq+1vq+2, . . . , vt−1vt have their
top vertices in the chain vp · · · vq , while triangles with bases vtvt+1, . . . , vm−1vm have their top
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vertices in vi · · · vp (Figure 6, right). Let vs be the vertex connected to vt−1 and vt; then Lemma
3 applies to polygons vivm · · · vnv1 · · · vi and vs · · · vqvq+1 · · · vtvs introducing vtvq and vmv1 with
O(n) parallel flips (Figure 7, left).

As in the proof of the previous lemma, let ut, . . . , um−1 be the top vertices of triangles
with bases vtvt+1, . . . vm−1vm, respectively. After the step in the preceding paragraph, we have
ut = vh and um−1 = vi (Figure 7, right), and the active polygon is v1 · · · vp · · · vqvt · · · vmv1. Our
final goal is to have ut = ut+1 = · · · = um−1 = vq .
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Figure 7: Situation corresponding to Lemma 4 after the first round of flips.

Inside polygon Ft = vtvh · · · vp · · · vqvt we introduce next the tangent vhvr from ut = vh
to the chain vp · · · vq . Let us show that this can be done sequentially with a cost linear in
the number of vertices that end up above this tangent. Vertices vp and vt are convex in Ft,
hence the diagonal joining them can be flipped; in this way we obtain the diagonal vp−1vp+1

which we call the current bridge. We update Ft to be now the polygon vtvh · · · vp−1vp+1 · · · vqvt.
The flip just performed is called a bridge-flip, and it is charged to the vertex vp. Observe
that at least one of the vertices vp−1 and vp+1 must be a vertex of the convex hull of the
polygon v1 · · · vp−1vp+1 · · · vqv1; hence the diagonal joining that vertex to vt can be flipped, say
to vp−2vp+1. This is again a bridge-flip, which we charge to vp−1; the new bridge is vp−2vp+1

and Ft is updated to be vtvh · · · vp−2vp+1 · · · vqvt. The process is iterated until the tangent vhvr
from ut = vh to the chain vp · · · vq is introduced. Notice that the vertices above the bridge are
no longer part of the active polygon and therefore will never be charged again. An example of
this process is shown in Figure 8.

Figure 8: A sequence of bridge-flips. Current bridges are the thicker lines, and the vertices which
get charged at each step are encircled.

The situation is now as in the left part of Figure 9. Inside polygon vqvtvt+1vhvr · · · vq the
only diagonal that can be flipped is vtvh and thus ut moves to the upper left chain vp · · · vq with
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this flip, which we call jump-flip because one may thing that ut “jumps” from the upper right
chain to the upper left chain. A jump-flip is shown in Figure 9, right.
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Figure 9: A jump-flip.

We can now imagine that ut starts “travelling” towards vq , with a total of q − r required
flips, advancing one position at each step: for this reason we denote this kind of flips as advance-
flips. Nevertheless, let us consider the moment when ut is still at vr. Inside the polygon
Ft−1 = vrvt+1ut+1 · · · vhvr we can perform a bridge-flip simultaneously with the first advance
of ut towards vq , the polygon looses one triangle, which goes above the bridge, and gains one
triangle (see Figure 10). We keep doing parallel advance-flips and bridge-flips until either ut
reaches vq (in this case we would continue just doing bridge-flips) or we introduce the tangent
from ut+1 to the upper left chain. In the latter situation we would perform a jump-flip for ut+1;
then a new bridge-flip would be performed in parallel with the simultaneous advance-flips of
both ut and ut+1, and the process would be iterated.
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Figure 10: An advance-flip and a bridge-flip which are done in parallel. It is also shown how the
polygon Ft−1 (shaded) is updated.

Two more details have to be specified before we can analyze the cost of this process. First,
notice that we are doing advance-flips simultaneously with bridge-flips; this is true until the
jump of um−1, because from then on no more bridge-flips are performed. Second, a particular
situation arises when several top vertices, say ut1 , . . . utr , are at the same position in the upper
right chain (as is the case of ut+1 and ut+2 in Figure 10). In this case we perform sequentially
all the corresponding jump-flips, one by one. After that ut1 , . . . utr are at the same position in
the upper left chain. Only ut1 is now able to advance towards vq , but once this flip is done,
both ut1 and ut2 may advance simultaneously in a single parallel flip. After this second flip ut1 ,
ut2 and ut3 are able to advance simultaneously in a single parallel flip, and so on. We don’t
consider these r− 1 flips as advance-flips: as they are done in order to separate the top vertices,
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we call them split-flips, and count them separately as well. Once utr−1 and utr are at different
positions in the upper left chain we may resume on doing advance-flips. An example is shown
in Figure 11.

a

c

b

d e

Figure 11: The flips a, b and c are jump-flips, while d and e are split-flips.

The advance-flips after the jump of um−1 are at most q− p. All other advance-flips are done
in parallel with bridge-flips, and these are charged once and only once to a vertex, which gives
at most q flips. The jump-flips are m − t and, finally, at most m − t split-flips are done. This
gives a total of at most 2n parallel flips, because

(q − p) + q + (m− t) + (m− t) ≤ 2q + 2(m− t) = 2(q +m− t) ≤ 2n.

2

Observation 2. We remark that if in the above lemma vq = vq+1, the result still applies.
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Figure 12: Situation corresponding to Lemma 5.

Lemma 5 Let Qn be a polygon such that x, u, y and v are the only convex vertices in counter-
clockwise order, and such that uv and xy are diagonals of Qn. Then any triangulation of Qn
containing xy can be transformed into another triangulation containing uv with O(n) parallel
flips.

Proof. Let T be a triangulation containing xy. As x and y cannot both have degree one in T ,
we can assume that y has neighbors different from x in the chain x . . . u, as in Fig. 12a.

Let now x1 be the last vertex in the chain x · · ·u connected to y, and let x1w be the tangent
from x1 to v · · ·x. Let also w′ be the neighbor of w in the chain w · · ·x, and let y1 be the vertex
connected to w and w′. Use Lemma 4 in the polygon x . . . x1y . . . y1w . . . x to introduce x1w
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and x1y1 with cost proportional to the total length of chains xx1, yy1 and wx. Similarly, next
introduce the tangent y1z from y1 to u · · · y, and the diagonal y1t, where the triangle zz′t is
defined as ww′y1 (see Figure 12b). The cost is proportional to the total length of x1 · · · t, z · · · y
and y · · · y1.

Now repeat the process in the new polygon u · · · zy1 · · · v · · ·wx1 · · ·u, with x1 and y1 playing
the role of x and y in the starting polygon. If t = x1 we have a smaller polygon in the situation
of the lemma, in which no cost has been charged to the edges in the previous step. If t 6= x1 then
y1 has neighbors different from x1 in the chain x1 . . . u and we are in the previous situation, with
the additional fact that the chain x1 . . . t has already contributed once to the cost. Nevertheless
the chain x1 . . . t plays the role of the chain x . . . x1 which pays once and disappears.

At the end the diagonal uv has been introduced; the edges in chains v · · ·x and u · · · y have
been charged once, and edges in y · · · v and x · · ·u have been charged twice. The total number
of flips is thus O(n). 2

Equipped with the above three lemmas, we proceed to the proof of Proposition 1.

Proof of Proposition 1. Assume that the diagonal e = uv to be inserted is horizontal, and
let Pe be the polygon formed by all the triangles of T that cross e. The polygon Pe consists of
two chains from u to v, let us call them the upper and the lower chains (see Figure 13, top).
Let c be the number of convex vertices of Pe; our goal is, with at most O(n) parallel flips, to
reduce the number of convex vertices in Pe from c to 3c/4. This is done with the help of the
above three lemmas. Thus iterating the procedure e will be introduced into T in O(log c) steps,
each of them requiring O(n) parallel flips, and the result will follow.

Pe
u

Peupdated

vi v

τ

j

j

vk

v

u v

Figure 13: Illustrating the proof of Proposition 1.

Let vi, vj , vk be three consecutive convex vertices in Pe, i.e. all the vertices between vi and
vj , and between vj and vk are reflex (Figure 13, top). Then we define the tangent τj associated
to vj as the segment tangent to the two reflex chains (possibly reduced to vi or vk) neighboring
vj . Assume that at least c/2 convex vertices of Pe are in the lower chain. Now the goal is to
introduce c/4 tangents, essentially one for every two consecutive convex vertices in the lower
chain, the updated Pe will have at most 3c/4 convex vertices (Figure 13, bottom).

Let y = vj be a convex vertex in the lower chain and let ab = τj the associated tangent.
Consider the polygon Pab formed by all the triangles that cross ab, and let k be the number
of convex vertices in the upper chain (excluding the two extremes) belonging to Pab. Several
cases arise depending on the value of k; in some of them we are introducing the tangent ab,
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which is always the initial target, but in some cases we are introducing instead a tangent to the
upper chain, also contained in Pab. In all these situations a tangent is introduced in a number
of parallel flips which is linear in the size of Pab. As the polygons Pab associated with different
tangents have disjoint interiors the total number of parallel flips is O(n).

We show next how to proceed case by case, depending on the values of k, which will conclude
the proof. For the sake of clarity we assume that the line ab is horizontal.

ba

y
k= 0

x

a b

y
k> 2

γ

Figure 14: The cases k = 0 and k > 2 in the proof of Proposition 1.

Case k = 0. In this situation we simply apply Lemma 4 in order to introduce ab (see Figure 14
left).

Case k = 1. Let x be the opposite convex vertex in the upper chain. We can assume that x
is joined to y: otherwise x is joined to some z between, say, a and y; then we introduce the
tangent from z to the chain y · · · b using Lemma 4 applied to the union of triangles crossed by
this tangent, and z becomes y (Figure 15, left). Once we are in the situation where x is joined
to y (see Figure 15, right), we apply Lemma 3 and place the tangents from a and b to the
corresponding upper reflex chains, and we are in the situation covered by Lemma 5, allowing us
to introduce ab.

x

y

a b

x

y
z

a b

x

y
a b

Figure 15: The case k = 1 in the proof of Proposition 1.

Case k > 2. Let x be one of the convex vertices in the upper chain, different from the leftmost one
and the rightmost one, and let γ be the tangent associated with x (Figure 14, right). Instead
of introducing ab we introduce in this case γ, this will also make one convex vertex from Pe
disappear, namely x. Notice that once γ plays the role of ab, i.e., we only consider the union of
triangles that cross γ. Now, from the viewpoint of γ, we are either in the case k = 0 or in the
case k = 1, already considered, and thus we are done.

Case k = 2. Let x and z be the internal convex vertices of the upper chain.
If the tangent γ in Pe connecting the reflex chain between x and z with one of the neighboring

reflex chains lies entirely inside Pab, instead of introducing ab we introduce γ, and notice that
from the viewpoint of γ we are in the situation k ≤ 1 (see Figure 16, left).
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Otherwise let q be the rightmost vertex of the upper chain, and let γ = pq be the tangent
from q to the reflex chain between x and z (see Figure 16, right). We first introduce pq; from
the viewpoint of this diagonal we are in situation k ≤ 1. When the polygon z · · · pq · · · z is cut
from Pe the convex vertex z will be gone; nevertheless we cannot stop here, as we did in some
previous cases, because it is possible that q were reflex in the initial Pe but becomes convex in
the updated Pe. Now in a second round we turn back to introducing ab, which at this moment
is in the situation k = 1. 2

x x
p p

z z
q q

a b

y

a b

y

γ γ

Figure 16: The case k = 2 in the proof of Proposition 1.

Proof of Theorem 2. Our proof is by induction on n. We denote by T (n) an upper bound
on the number of parallel flips needed to transform any two triangulations of a simple n-gon into
each other. Let e = uv be a long diagonal of T ′, that is, a diagonal that splits the boundary of
Qn into two chains, each of them of length at most 2n/3. The existence of this diagonal (in fact
a much stronger result) is proven in [5], where constructive algorithms are also given. Let A(n)
be an upper bound on the number of parallel flips needed to introduce e in T . Then clearly

T (n) ≤ T (b2n/3 + 1c) +A(n).

Let Pe be the polygon formed by the union of all the triangles of T that cross e (see Fig. 17).
Since the diagonals of the triangulation Te induced by T on Pe are linearly ordered by their
crossings with e, we can find three diagonals ei = xiyi, i = 1, 2, 3, of Te that split Pe into four
subpolygons R1, R2, R3, R4 of size at most bn/4 + 2c.

v

y
y

R
RR

2

3

2

4

3

x3

x2

u
R 1

y1

x1

Figure 17: Splitting the polygon Pe associated to the diagonal e = uv.

We next transform the triangulation Ti induced by T in Ri into a triangulation T 0
i including

two concave chains that do not cross the edge e; one of them links xi−1 to xi and the other links
yi−1 to yi, where x0 = y0 = u and x4 = y4 = v. They are simply shortest paths inside Ri. By
induction, all the T 0

i can be reached using at most T (bn/4 + 2c) parallel flips.
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Now the polygon P 0
e whose boundary is the set of concave chains has at most 8 convex

vertices. By Proposition 1, e can be introduced using αn parallel flips for some α > 0. Therefore

A(n) ≤ T (bn/4 + 2c) + αn.

Finally,
T (n) ≤ T (b2n/3 + 1c) + T (bn/4 + 2c) + αn,

which gives T (n) ∈ O(n). 2

Observation 3. Let us extend the class of polygons we have been considering by requiring
the interior to remain simply connected but allowing the boundary to touch itself externally.
In Figure 18 (right) some ways in which this fact may happen are shown. Notice that these
polygons are not properly simple as their boundary is not a Jordan curve.

If the simple polygon in Figure 18 (left) differs only infinitesimally from the polygon at the
right, in the sense that the internal visibility is exactly the same, both polygons have the same
triangulations and these behave identically. Hence the preceding results in this section also apply
to the extended class of polygons. This fact is used in the proof of the next theorem, because
certain polygons are constructed by gluing adjacent triangles and situation (a) in Figure 18
might arise.

(a) (b)

(c)

(b)

(c)

(a)

Figure 18: The simple polygon to the left and the externally self-touching polygon to the right
have identical internal visibility.

Proof of Theorem 3. We first define a target triangulation T ∗, and then show how to reach
the target from any given triangulation.

Performing a rotation if necessary, we can assume that no two points of Pn have the same
y-coordinate. Let h be a horizontal line dividing Pn into two balanced subsets, P+

n and P−n , the
points above and below h, respectively (see Figure 19a). Let us consider the polygonal region R
of the convex hull CH(Pn) of Pn, comprised between the lower hull of P+

n and the upper hull of
P−n . Let T ∗(R) be any fixed triangulation of R: this will be the portion of T ∗ inside R. Finally,
we construct T ∗ recursively inside CH(P+

n ) and CH(P−n ).
Let T be any given triangulation of Pn and let ui−1, ui, ui+1 be consecutive vertices of the

lower hull of P+
n (traversed counterclockwise). Observe that, as the angle between the vectors

−−−−→uiui−1 and −−−−→uiui+1 exceeds π, at least one edge e in T must cross h and have one extreme at ui
and the other one at some point in P−n . A similar reasoning can be applied to the vertices in
the upper hull of P−n .

Let us consider the union Q of all triangles in T crossing h (see Figure 19b). This is a
polygon which contains R and includes among its vertices all the vertices in the lower hull of P+

n

and the upper hull of P−n , as observed above. By Theorem 2 (Q is not necessarily simple but
see Observation 3 after the proof of the theorem) we can perform O(n) parallel flips and obtain
inside Q all the edges of the lower hull of P+

n , the edges of the upper hull of P−n , and the edges
of T ∗(R).
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Q
T (R)

h

*

a) b)

Pn

Pn

+

-

Figure 19: a) Defining T ∗. b) Polygonal region Q (shaded) of T .

We can now repeat the process in parallel inside CH(P+
n ) and CH(P−n ). In this way we

reach T ∗ with a total of
O(n +

n

2
+
n

4
+ · · ·) = O(n)

parallel flips, and this proves the result. 2

Proof of Theorem 4. Let E be a set of flippable edges from T with the maximum cardinality.
We know that |E| ≥ (n−4)/2 as at least this number of edges are flippable in any triangulation,
as shown in [14]. In general, not all of them can be flipped in parallel, since they may not be
flip-independent. Complete T combinatorially by adding a point w in the external face and
connecting w to all the points in the convex hull of Pn, and let T̂ be the dual graph of the
completed triangulation. As a bridgeless planar cubic graph, T̂ can be edge-coloured with 3
colours [4, p. 254]. The edges of T̂ are in a one-to-one correspondance with the edges of T ; let

Ê be the set of edges associated with E. Any set of edges in Ê pairwise not sharing any node
corresponds to a flip-independent set in E. If we take the subset of edges in Ê with the most
frequent colour of the three, we obtain a flip-independent set of at least (n− 4)/6 edges.

To construct a triangulation in which at most (n − 4)/5 edges can be flipped in parallel
we proceed as follows. Take a triangulation T of a convex polygon whose dual tree τ is a
complete balanced binary tree of odd height h (here the tree is rooted at an internal triangle
and the root has out-degree 3). In every triangle of T corresponding to a node in τ at an odd
level, i.e. at levels 1, 3, . . . , h, place a new vertex and connect it to the three vertices of the
corresponding triangle (this is illustrated in Figure 20 for h = 3). A simple counting shows
that the triangulation so obtained has n = 10 · 4(h−1)/2 − 1 = 10 · 2(h−1) − 1 vertices, and only
2 · 4(h−1)/2 − 1 = 2 · 2(h−1) − 1 = (n − 4)/5 diagonals can be flipped in parallel, one for every
empty triangle of the original convex polygon. 2

4 Conclusions and open problems

In this paper we have shown that O(n) parallel flips are sufficient to transform any triangulation
of a simple polygon or of a point set into any other triangulation, and that this bound is tight.
From the algorithmic point of view this number of flips is the right measure of complexity
assuming that a centralized controller computes, with cost considered as irrelevant, the flips
that have to be performed in every step.
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Figure 20: The six lunes on the left are as the drawing on the right. Only 7 = (39− 4)/5 edges
can be flipped in parallel, one in the root triangle and one in each lune.

The main open question is the uncontrolled problem in which the triangulation evolves in
a distributed manner and decisions are driven by local information. Some heuristics for this
problem are described in [10]. Another open problem appears if we restrict the simultaneous flip
operation by requiring that all the single flips involved are locally Delaunay. Then it is natural
to ask how many of these “parallel Delaunay flips” are necessary in order to reach the Delaunay
triangulation from any given starting triangulation.

From a different point of view, it would be interesting to find more precise bounds, as was
done in [14] for sequential flips, depending on the number of reflex vertices in a simple polygon,
or on the number of convex layers of a point set. Finally, it is an open question to close the gap
between the fractions 1/6 and 1/5 in Theorem 4.
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