On spanning trees and cycles of multicolored point sets with few intersections

M. Kano*, C. Merino ${ }^{\dagger}$ and J. Urrutia ${ }^{\dagger}$

April 7, 2003

Abstract

Let P_{1}, \ldots, P_{k} be a collection of disjoint point sets in \Re^{2} in general position. We prove that for each $1 \leq i \leq k$ we can find a plane spanning tree T_{i} of P_{i} such that the edges of T_{1}, \ldots, T_{k} intersect at most $k n(k-1)(n-k)+\frac{(k)(k-1)}{2}$, where n is the number of points in $P_{1} \cup \ldots \cup P_{k}$. If the intersection of the convex hulls of P_{1}, \ldots, P_{k} is non empty, we can find k spanning cycles such that their edges intersect at most $(k-1) n$ times, this bound is tight. We also prove that if P and Q are disjoint point sets in general position, then the minimum weight spanning trees of P and Q intersect at most $7 n$ times, where $|P \cup Q|=n$ (the weight of an edge is its length).

1 Introduction

The study of geometric graphs, that is graphs whose vertex set is a collection of points on the plane in general position and its edges are straight line segments connecting pairs of vertices, has received a lot of attention lately. Numerous problems in which we want to draw graphs on the plane such that their vertices lie on the elements of a fixed point set have been studied. Ramsey type problems in which we want to color the edges or vertices of a geometric graph such that some specific forbidden subgraphs do not appear have also been studied. The interested reader may consult a recent survey by J. Pach [9] containing many results in this field. In this paper we are interested in studying problems of embeddings of geometric graphs on colored point sets. These problems have been studied for some time now, for example in $[1,2]$ the problem of embedding trees and alternating paths on bicolored point sets is studied. In $[3,4,5]$ matching problems on colored point sets are studied. For two colored point sets we are interested in obtaining matchings in which every edge has its

[^0]endpoints of different (or equal) color. A well known result states that given a colection $P_{2 n}$ of $2 n$ points in general position, n blue, and n red, we can always match a blue with a red point in $P_{2 n}$ such that the line segments joining matched pairs of points do not intersect. For a recent survey dealing with numerous problems on colored point sets see [6]. Problems in which instead of coloring the vertices, we color the edges of geometric graphs, are studied in $[7,8]$.

Let P_{n} be a set with n points on the plane. A spanning tree of P_{n} is a connected geometric graph with vertex set P_{n} containing exactly $n-1$ edges. Let P and Q be disjoint point set. Tokunaga, studied and solved the problem of finding spanning trees for P and Q with the smallest possible number of edge intersections. It turns out that this number depends only in the order in which the elements of P and Q lying on the convex hull $\operatorname{Conv}(P \cup Q)$ of $P \cup Q$ appear. More specifically, let p_{0}, \ldots, p_{r-1} be the points on $\operatorname{Conv}(P \cup Q)$ in clockwise order, and let i be the number of indexes j such that p_{j} and p_{j+1} are one in P and the other in Q, addition taken mod r. Then it is always possible to find spanning trees for P and Q such that their edges do not intersect if $i \leq 2$, otherwise they intersect exactly $\frac{i-2}{2}$ times. This implies for example that if all the points on the convex hull are the same color, or all the points in P which belong to the convex hull appear in consecutive order, then we can find spanning trees for P and Q which do not intersect, regardless of how many or where the remaining points of P and Q are.

In this paper we study the following problem: Let P_{1}, \ldots, P_{k} be a family of disjoint point sets such that $P_{1} \cup \ldots \cup P_{k}$ is in general position. Find spanning trees for P_{1}, \ldots, P_{k} such that their edges have as few intersections as possible. In this paper we prove the following result:

Theorem 1 Let P_{1}, \ldots, P_{k} be a collection of disjoint point sets. Then we can find for each P_{i} a spanning tree T_{i} such that the total number of intersections among the edges of T_{1}, \ldots, T_{k} is at most $(k-1)(n-k)+\frac{(k)(k-1)}{2}$ where $\left|P_{1} \cup \ldots \cup P_{k}\right|=n$. This bound is tight within a factor of two from the optimal solution.

We also give similar results for spanning cycles of families of point sets P_{1}, \ldots, P_{k} in which $\operatorname{Conv}\left(P_{1}\right) \cap \ldots \cap \operatorname{Conv}\left(P_{k}\right)$ is non empty. Sharp bounds for this problem are obtained.

In the last section of this paper, we prove the following result that is of independent interest: Let P and Q be disjoint point sets, then their euclidean minimum weight spanning trees intersect at most $14 n$ times. Using this we prove the following result: Let P_{1}, \ldots, P_{k} be families of disjoint point sets such that $P_{1} \cup \ldots \cup P_{k}$ is in general position. For each P_{i} let T_{i} be its euclidean minimum weight spanning tree, $i=1, \ldots, k$. Then then the edges of these trees intersect at most 7 kn times.

2 Spanning trees with few intersections

Given two disjoint point sets P_{1} and P_{2} it is not always possible to find spanning trees for them such that their edges do not intersect. In fact if we have $2 s$ points which are the vertices of a convex polygon such that alternately they belong to P_{1} and P_{2}, then it is easy to verify that any spanning tree for P_{1} intersects any spanning tree for P_{2} at least $s-1$ times, see Figure 1.

From here the following observation follows:

Observation 1 There are families of point sets P_{1}, \ldots, P_{k} with $\left|P_{1} \cup, \ldots, \cup P_{k}\right|=$ sk such that their edges intersect at least $\frac{k(k-1)}{2}(s-1)$ times.

Figure 1: Two sets of points, each with six points such that any spanning tree of the set with solid points intersects any spanning tree for the remaining points at least five times.

If we consider a similar problem for three or more point sets our problem becomes much harder, even for points in convex position. Let \mathcal{P} be a set of $n=k s$ points in convex position labelled $p_{1}, \ldots, p_{s k}$. Split \mathcal{P} into k subsets P_{1}, \ldots, P_{k} such that the element $p_{i+r k}$ belongs to $P_{i}, r=0, \ldots, s-1$. Finding for each P_{i} a spanning tree $T_{i}, 1 \leq i \leq k$, such such that their edges have the fewest possible number of intersections is hard. We now show a set of spanning trees T_{1}, \ldots, T_{k} such that their edges intersect at most $\left(\frac{3}{4} k^{2}-k\right)(s-1)-\frac{k(k-2)}{4}$ times if k is even; otherwise they intersect $\left(\frac{3}{4}(k-1)^{2}+\frac{k-1}{2}\right)(s-1)-\frac{(k-1)^{2}}{4}$ times, i.e. the number of times their edges intersect is at most $\frac{3}{2}$ times the optimal solution.

For i even, let T_{i} be the tree containing the edges joining $p_{i+a k}$ to $p_{i+b k}, a+b=s+1$ or $a+b=s+2,1 \leq a, b \leq s$. For i odd, T_{i}, is the tree containing the edges joining $p_{i+a k}$ to $p_{i+b k}, a+b=s$ or $a+b=s+1,1 \leq a, b \leq s$. Notice that two trees T_{i} and T_{j} intersect $s-1$ times if i and j have different parity; otherwise they intersect $2(s-1)-1=2 s-3$ times. See Figure 2. Therefore these trees intersect exactly $\left(\frac{3}{4} k^{2}-k\right)(s-1)-\frac{k(k-2)}{4}$ if k is even; and $\left(\frac{3}{4}(k)^{2}+\frac{k-1}{2}\right)(s-1)-\frac{(k-1)^{2}}{4}$ if k is odd. Moreover we believe that this configuration is, in fact, close to the optimal solution for point sets in convex position.

Figure 2: On the left hand side we have T_{i}, i odd, with dashed lines and T_{j}, j even, with solid lines; $s=8$ so, they intersect 7 times. On the right hand side we have T_{i} and T_{j}, i, j even; as $s=9$, they intersect 15 times.

We proceed now to study our problem for point sets in general position. Suppose w.l.o.g. that the points in $P_{1} \cup \ldots \cup P_{k}$ have different x-coordinates, and $\left|P_{i}\right| \geq 2, i=1, \ldots, k$. Assume that for every i the elements of P_{i} are labeled $p_{i, 1}, p_{i, 2}, \ldots, p_{i, r_{i}}$ such that if $r<s$ then the x-coordinate of $p_{i, r}$ is smaller than the x-coordinate of $p_{i, s}$. Let T_{i} be the path with vertex set P_{i} in which $p_{i, j}$ is connected to $p_{i, j+1}$ by an edge denoted by $e_{i, j}, j=1, \ldots, r_{i}-1$. See Figure 3.

Figure 3: A colection of four point sets and their spanning trees. The point sets are the vertices of our trees, which turn out to be paths.

Lemma 1 The edges of T_{i} and T_{j} intersect at most $r_{i}+r_{j}-3$ times.

Proof: Our result is clearly true if $r_{i}+r_{j} \leq 4$, or one of T_{i} or T_{j} has exactly one edge. Suppose now that the x coordinate of $p_{i, 2}$ is smaller than that of $p_{j, 2}$. Then the edge $e_{i, 1}$ of T_{i} joining $p_{i, 1}$ to $p_{i, 2}$ intersects at most one edge of T_{j}, namely the edge $e_{j, 1}$ joining $p_{j, 1}$ to $p_{j, 2}$. Remove $p_{i, 1}$ from p_{i}, and by induction our result follows.

In a similar way we can prove:

Lemma 2 The edges of T_{1}, \ldots, T_{k} intersect at most $(k-1)(n-k)+\frac{(k)(k-1)}{2}$ times, where $\left|P_{1} \cup \ldots \cup P_{k}\right|=n$

Proof: Our result is true if T_{1}, \ldots, T_{k} have together at most k edges, in fact in this case if all of them intersect each other, their total number of intersections is $\frac{(k)(k-1)}{2}$. Suppose then that our trees contain more than k edges, and let $e_{i, 1}$ be such that the x-coordinate of $p_{i, 2}$ is smaller than the x-coordinate of $p_{j, 2}, i \neq j, 1 \leq j \leq k$. Then the edge $e_{i, 1}$ joining $p_{i, 1}$ to $p_{i, 2}$ intersects at most $k-1$ edges, i.e. in each $T_{j} e_{i, 1}$ intersects at most the edge $e_{j, 1}$ joining $p_{j, 1}$ to $p_{j, 2}, j \neq i$. Removing this edge, and $p_{i_{1}}$ from P_{i}, and proceeding by induction on $P_{1}, \ldots, P_{i}-\left\{p_{i, 1}\right\}, \ldots, P_{k}$ our result follows.

Observe that the bound determined in Lemma2 is within a factor of two of that in Observation 1. Theorem 1 follows directly from Observation 1 and Lemma 2.

3 Spanning Cycles

We now study the following problem: Let P_{1}, \ldots, P_{k} be a family of disjoint point sets such that $\operatorname{Conv}\left(P_{1}\right) \cap, \ldots, \cap \operatorname{Conv}\left(P_{k}\right) \neq \emptyset$. Find a family of spanning cycles C_{i}, \ldots, C_{k} of P_{1}, \ldots, P_{k} respectively with few intersections. We prove:

Theorem 2 Let P_{1}, \ldots, P_{k} be a family of disjoint point set such that $\operatorname{Conv}\left(P_{1}\right) \cap, \ldots, \cap \operatorname{Conv}\left(P_{k}\right) \neq$ \emptyset. Then for each P_{i} we can find a cycle C_{k} which covers the vertices of P_{i} such that the edges of all cycles C_{i}, \ldots, C_{k} intersect at most $(k-1) n$ times. Our bound is optimal.

Proof: Let q be a point in the interior of $\operatorname{Conv}\left(P_{1}\right) \cap, \ldots, \cap \operatorname{Conv}\left(P_{k}\right)$. For each P_{i} define a cycle C_{i}^{q} as follows: Sort the elements of P_{i} around q in the counterclockwise order according to their slope and label them $p_{i, 1}, \ldots, p_{i, r_{i}}$ (see Figure 4(a)).

A straightforward modification to our counting argument in Lemma 2 shows that the edges of C_{1}, \ldots, C_{k} intersect at most $(k-1) n$ times. To show that our bound is tight, choose $n=k r$, and choose $k r$ points on a unit circle labeled $p_{1}, \ldots, p_{k r}$, and let $P_{i}=\left\{p_{i+k s}: k=0, \ldots, r-1\right\}$. It is easy to see that the (unique) cycles C_{i} that cover the vertices of each $P_{i}, i=1, \ldots, k$ intersect $(k-1)(k r)=(k-1) n$ times, see Figure $4(\mathrm{~b})$.

Figure 4:

4 Minimum weight spanning trees

The euclidean minimum weight spanning tree of a point set P_{n} is a tree with vertex set P_{n} such that the sum of the lengths of its edges is minimized. In this section we prove that if P_{1}, \ldots, P_{k} are disjoint point sets and T_{1}, \ldots, T_{k} are their corresponding euclidean minimum weight spanning trees then the total number of intersections among their edges is at most $7(k-1)(n-k)$ where $\left|P_{1} \cup \ldots \cup P_{k}\right|=n$. Our proof is based on the following observation that is easy to prove: Let T_{i} and T_{j} be the minimum weight spanning trees of P_{i} and P_{j}. Let e be any edge of T_{i}. Then there is a constant c such that e intersects at most c edges of T_{j} whose length is grater than or equal to the length of e. It follows that the edges of T_{i} and T_{j} intersect a linear number of times. In fact, we can prove that c is at most 9 , however the proof is long, tedious, and unenlightening. We skip the details, they can be supplied by the authors upon request. Summarizing we have:

Lemma 3 Let T_{1} and T_{2} be the minimum weight spanning trees of two point sets P_{1} and P_{2}, and e any edge of T_{1}. Then e intersects at most 9 edges of T_{2} whose length is greather than or equal to the lenght of e.

We now prove:

Theorem 3 Let T_{1}, \ldots, T_{k} be respectively the minimum weight spanning trees of k point sets P_{1}, \ldots, P_{k} such that $\left|P_{1} \cup \ldots \cup P_{k}\right|=n$. Then the edges of T_{1}, \ldots, T_{k} intersect at most $9(k-$ 1) $(n-k)$ times.

Proof: Observe first that since $\left|P_{1} \cup \ldots \cup P_{k}\right|=n, T_{1}, \ldots, T_{k}$ have exactly $n-k$ edges. Let us construct the intersection graph H of the set of edges of T_{1}, \ldots, T_{k}, that is the graph whose vertex set is the set of all edges of T_{1}, \ldots, T_{k}, two of which are adjacent if they intersect. Orient the edges of this graph as follows: If two edges $e \in T_{i}$ and $e \in T_{j}^{\prime}$ intesect and e is longer than e^{\prime} orient the edge in H joining them from e to e^{\prime}, see Figure 5.

Figure 5: The intersection graph of three minimum weight spanning trees.

By Lemma 6 every edge in T_{i} intersects at most 9 edges in each $T_{j}, i \neq j$ which are the same lenght or longer than itself. Thus the out-degree of each vertex of H is at most $9(k-1)$. Our result follows.

Observe that for the case when we have two point sets P and Q such that $|P \cup Q|=n$, our previous results implies that the edges of their minimum weight spanning trees intersect at most $9(n-2)$ times. This bound is far from optimal. In fact we have been unable to produce examples in which the minimum weight spanning trees of P and Q intersect more than $2 n-4$ times. An example is constructed as follows: P consists of 3 points r, s, t such that r and s are equidistant from t, and the angle $\angle r t s$ is slightly bigger than $\frac{\pi}{3}$. The points of Q lie on a zig-zag polygonal such that each second segment of it is parallel, and the angle between two consecutive segments is $\frac{\pi}{2}$ as shown in Figure 6 .

We conclude by posing the following question:

Open problem 1 Is it true that the edges of the minimum weight spanning trees of any two point sets P and Q such that $|P \cup Q|=n$ intersect at most $2 n-c$ times, c a constant?

Figure 6: P has 3 points, and Q 5. The number of elements of Q can be increased to $n-3$, $n \geq 4$. The number of edge intersections of the minimum weight spanning trees of P and Q is $2 n-4$.

References

[1] M. Abellanas, J. García, G. Hernández, N. Noy, and P. Ramos, Bipartite embeddings of trees in the plane, in Graph Drawing 96, Lecture Notes in Computer Science, 1990 Springer Verlag, Berlin, (1997), 1-10.
[2] J. Akiyama, and J. Urrutia, Simple alternating path problems, Discrete Math 84 (1990) 101-103.
[3] A. Dumitrescu, and J. Pach. Partitioning colored point sets into monochromatic parts, Int. J. of Computational Geometry and Applications.
[4] A. Dumitrescu, and R. Kaye, Matching colored points in the plane, some new result, Comp. Geometry, Theory and Applications 19 (1) (2001), 69-85.
[5] A. Dumitrescu, and W. Steiger, On a matching problem on the plane, Discrete Math. 211 (2000), 183-195.
[6] A. Kaneko M. Kano, Some problems and results on graph theory and discrete geometry, 2001. (ps-file in http://gorogoro.cis.ibaraki.ac.jp/)
[7] G. Karoli, J. Pach, and G. Tóth, Ramsey-type results for geometric graphs, I, Discrete and Comp. Geometry 18, 247-255 (1995).
[8] G. Karoli, J. Pach, and G. Tóth, and P. Valtr, Ramsey-type results for geometric graphs, II, Discrete and Comp. Geometry 20, 375-388 (1998).
[9] J. Pach, Geometric graph theory. Surveys in combinatorics, 1999 (Canterbury), 167200, London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press, Cambridge, 1999.
[10] S. Tokunaga, Crossing number of two-connected geometric graphs, Info. Proc. Letters 59 (1996) 331-333.

[^0]: *Department of Computer and Information Sciences, Ibaraki University, Hitachi 316-8511, Japan
 †Instituto de Matemáticas Universidad Nacionál Autónoma de México, México D.F. México

