TRAVERSAL OF A QUASI-PLANAR SUBDIVISION
WITHOUT USING MARK BITS

E. CHAVEZ!, S. DOBREV?, E. KRANAKIS?, J. OPATRNY?, L. STACHO® and J. URRUTIA®

ABsTRACT. The problem of traversal of planar subdivisions or other graph-like structures
without using mark bits is central to many real-world applications [7, 8, 11, 13, 12, 17, 18].
First such algorithms developed were able to traverse triangulated subdivisions [10]. Later
these algorithm were extended to traverse vertices of an arrangement or a convex polytope [3].
The research progress culminated to an algorithm that can traverse any planar subdivision
[6, 9]. In this paper, we extend the notion of planar subdivision to quasi-planar subdivision
in which we allow many edges to cross each other. We generalize the algorithm from [9] to
traverse any quasi-planar subdivision that satisfies a simple requirement. If we use techniques
from [6] the worst case running time of our algorithm will be O(|E|log |E|); which matches
with the running time of the traversal algorithm for planar subdivisions [6].

1. INTRODUCTION

Graph traversal is a fundamental problem in graph algorithms: Given a starting vertex, can
we systematically traverse the entire graph reaching every vertex reachable from the starting
one? Many elementary graph algorithms involve making traversal of the graph (e.g., connected
component, tree and cycle detection, graph coloring) in order to update their knowledge as
they visit each edge and vertex. There have been several studies on traversal in the literature.
The best known polynomial traversal algorithm for undirected graphs needs O (log? n) space—
O(logn) variables each storing an address (O(logn) bits) of a vertex [4, 16]. One can even
drop the space to O(log*?n) but then time will not be polynomial [15]. Very recently, this
was improved to O(log®/3 n) space [2]. There are also randomized O(log n) space and expected
polynomial time traversal algorithms known [1]. Note that (logn) space is necessary for any

'Escuela de Ciencias Fisico-Matematicas de la Universidad Michoacana de San Nicolés de Hidalgo, México.
2School of Information Technology and Engineering (SITE), University of Ottawa, 800 King Eduard, Ottawa,
Ontario, Canada, K1N 6N5. Research supported in part by NSERC (Natural Science and Engineering Research
Council of Canada) grant.
3School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
Research supported in part by NSERC (Natural Science and Engineering Research Council of Canada) and
MITACS (Mathematics of Information Technology and Complex Systems) grants.
4Department of Computer Science, Concordia University, 1455 de Maisonneuve Blvd West, Montréal, Québec,
Canada, H3G 1M8. Research supported in part by NSERC (Natural Science and Engineering Research Council
of Canada) grant.
SDepartment of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia,
Canada, V5A 156. Research supported in part by NSERC (Natural Science and Engineering Research Council
of Canada) grant.
SInstituto de Matematicas, Universidad Nacional Auténoma de México, Area de la investigacion cientifica,
Circuito Exterior, Ciudad Universitaria, Coyoacan 04510, México, D.F. México.

1

traversal algorithm, hence O(logn) space traversal algorithms are referred to as algorithms
with no ertra memory or without using mark bits. For lower bounds on time-space tradeoff
of the traversal problem see [5]. In this paper, we are solely interested in traversal algorithms
with no extra memory. We gain the improvement of factor logn compared to the algorithm
from [4] by assuming the graph is geometric and satisfies a simple topological condition. This
is a significant improvement since, so far, such algorithms have been known only for planar
geometric graphs [3, 6, 9, 10].

Our motivation for studying this problem comes from wireless computing: a set of vertices
forms spontaneously an ad hoc wireless network. The vertices being aware only of their
own geographic location are required to perform fundamental network tasks such as route
discovery and broadcasting under various performance parameters such as minimum number
of hops, lowest energy consumption, etc. The problem has been considered in several papers
including [7, 8, 11, 13, 12]. In all cases, it is assumed that the underlying ad hoc network
is preprocessed in order to produce a planar spanner over which a route discovery algorithm
can be performed. In this paper we go beyond the existing literature by defining a new class
of networks over which the fundamental task of graph traversal can be performed efficiently
without prior knowledge of the whole network but rather based solely on local knowledge of
the geographic location of the nodes.

A planar subdivision is a partitioning of the plane E? into a set V of vertices (points), a set
E of edges (line segments), and a set F' of faces (polygons). In this paper we always consider
only finite partitions. Furthermore, we assume that no edge passes through any vertex except
its end-vertices. A combinatorial abstraction of a planar subdivision is the planar graph
G = (V,E) together with its straight-line embedding into the plane. We will often identify
the planar subdivision with its planar graph G in this paper. A subdivision is connected if its
graph is connected.

Planar subdivisions are finding more and more applications into various real-world prob-
lems. For example, they are the basic spatial vector data structure in many geographic
information systems [17, 18|. Further recent applications of planar subdivisions can be found
in the area of ad hoc wireless networks which we already mentioned above. A fundamental
task performed on planar subdivisions is the traversal. Traversing a subdivision involves re-
porting each vertex, edge, and face of G exactly once, so that some operation can be applied
to each. The usual approach to the problem involves a DFS (Depth First Search) of the
primal (vertices and edges) or dual (faces and edges) graph. Unfortunately, this technique
cannot be implemented without using mark bits on the vertices, edges, or faces, and a stack or
queue. If the data structure used to represent the subdivision G does not have extra memory
allocated (which is the case for many real-world applications, i.e. the hosts in ad hoc wireless
networks are usually very simple devices with limited memory), then an auxiliary array must
be allocated and some form of hashing is required to map vertex/edge/face records to array

indices. The DFS approach has also another drawback—the traversal cannot be performed

2

simultaneously by more than one thread of execution without some locking mechanism, and
of course the memory requirements are increasing.

These problems stimulated an extensive research on traversing planar subdivisions or other
graph-like structures without the use of mark bits. One of the first such algorithms developed
was for the traversal of a triangulated subdivision [10]. The main idea was to choose one
starting point and then define for each triangle unique starting edge through which the triangle
can be entered. With careful order and choices one can make sure that each triangle in the
subdivision is reported exactly once. In fact, an order is defined on triangles and triangles are
reported in this order. This technique is the basis of all subsequent results: In [3], authors
describe an algorithm for traversal of vertices of an arrangement or a convex polytope. In [9],
authors extend the algorithm to arbitrary planar subdivisions, and very recently, in [6] the
running time of this algorithm was improved.

Generally speaking, all algorithms described in [3, 6, 9, 10] use geometric properties of
planar subdivisions. In this paper, we look at planar subdivisions as combinatorial objects—
graphs consisting of vertices, edges and cycles which give the notion of faces. This allows us
to generalize results from [9, 6] to graphs that do not necessarily represent planar subdivisions
in E2. In particular, we define a notion of a quasi-planar subdivision which generalizes the
notion of planar subdivision and give an algorithm for traversing quasi-planar subdivisions
without the use of mark bits. The worst case running time of our algorithm is O(|E|log |E|)
where FE is the number of edges in the quasi-planar subdivision G. Note that if G is a planar
subdivision, then |E| = O(]V|) and the running time of our algorithm matches the running
time of the best known planar subdivision traversal algorithm [6]. The implementation of our
algorithm only requires that every vertex knows its and its neighbors coordinates.

2. QUASI-PLANAR SUBDIVISIONS

In this section, we generalize the notion of planar subdivision and its traversal.
A quasi-planar subdivision is a graph G = (V, E) with vertices embedded in the plane and
partitioned into V, UV, =V so that

e vertices in V), induce a connected planar graph P,
e the outer-face of P does not contain any vertex from V, or edge of G — P, and
e 1o edge of P is crossed by any other edge of G.

An example of a quasi planar subdivision is depicted in Figure 1.

We will refer to the graph P as an underlying planar subgraph and to its faces as underlying
faces. The notion of vertices and edges is explicit in the definition of quasi-planar subdivision,
however, the notion of faces is not. To define the notion of a face, we need to introduce some
basic functions on quasi-planar subdivisions. Note that our algorithms do not need to know
the partition of V into V,, and V.. Such a partition is used only in the proofs of correctness

of algorithms.

FIGURE 1. An example of a quasi-planar subdivision that satisfies the Left-
Neighbor Rule. The filled vertices are in V, and bold edges are edges of the
underlying planar subgraph P.

gface(e) pred(e%
succ(e)

e

FIGURE 2. Illustration of basic functions on quasi-planar subdivisions.

2.1. Basic functions on quasi-planar subdivision. We assume that every vertex wu is
uniquely determined by pair [x,y] where x is its horizontal coordinate and y is its vertical
coordinate. Moreover, we assume that the representation of G is so that every edge e = uwv is
stored as two oppositely directed edges (u,v) and (v,u). If we need to specify a direction of
e, we write either e = (u,v) or e = (v,u), and if the direction is irrelevant, we write e = uv.
Note that in our algorithm, we will still report each (undirected) edge e = uv exactly once.

For a vertex v, the function xcor(v) will return the horizontal coordinate of the vertex v,
while the function ycor(v) will return the vertical coordinate of v. For an edge e = (u,v),
the function rev(e) will return a pointer to the edge (v,u). We will sometimes use e~ to
denote rev(e). Similarly the function succ(e) will return a pointer to the edge (v,z) so
that (v,z) is the first edge counter-clockwise around v starting from the edge (v,u), and
the function pred(e) will return a pointer to the edge (y,u) so that (u,y) is the first edge
clockwise around u starting from the edge (u,v). For an illustration of these functions see
Figure 2. These functions can be easily implemented using so-called doubly-connected edge
list structure [14, 19].

Obviously, functions succ() and pred() are injective, and thus, for every (directed) edge

e = (u,v) of G, we can define a closed walk by starting from e = (u,v) and then repeatedly
4

FIGURE 3. A quasi-planar subdivision and its six quasi-faces.

applying the function succ() until we arrive at the same edge e = (u,v). Such a walk is called
a quasi-face of G. The set of all quasi-faces of G is denoted by F'. The function gface(e) will
return a pointer to the quasi-face determined by the (directed) edge e = (u,v). Note that if
G is a planar subdivision, then quasi-faces become (regular) faces, and hence the notion of
quasi-planar subdivision generalizes the notion of the connected planar subdivision.

The task of traversing a quasi-planar subdivision is to report every vertex, (undirected)
edge, and quasi-face exactly once in some order. For general quasi-planar subdivisions this
seems to be a hard task if we want to perform it without using mark bits and a stack. In
the next section, we will show that it is possible to traverse a quite large class of quasi-planar
subdivisions.

Definition 1. We say that a quasi-planar subdivision G satisfies a Left-Neighbor Rule if every
vertex v € V. has a neighbor u so that xcor(u) < xcor(v). For an example of G that satisfies
the Left-Neighbor Rule see Figure 1.

3. QUASI-PLANAR SUBDIVISION TRAVERSAL ALGORITHM

In this section, we generalize traversal algorithms from [9, 6] so that it will traverse any
quasi-planar subdivision G = (V, F) that satisfies the Left-Neighbor Rule. The general idea
of the algorithm is the same as the one in [3, 6, 9, 10]: We define a total order < on all edges
in . Using this order, we define a unique predecessor for every quasi-face in F' such that the
predecessor relationship imposes a virtual directed tree G(F'). The algorithm will search for
the root of G(F') and then will report quasi-faces of G in DF'S order on the tree G(F'). For this
we use a well-known tree-traversal technique to traverse G(F') using O(1) additional memory.
Note that the tree G(F') is never stored in memory and at any given time the algorithm will
remember only a constant number of edges (at most two) of this tree. The tree G(F) is used

to prove the correctness of our algorithm.

3.1. The order =, the entry edge, and the virtual tree G(F). In order to define the
virtual tree G(F'), we determine a unique edge, called an entry edge, in each quasi-face.
We first define a total order on all edges in E. We write u < v if (xcor(u),ycor(u)) <
(xcor(v),ycor(v)) by lexicographic comparison of the numeric values using <. For an edge

e = (u,v), let

. .)
v, otherwise u, otherwise

if if
left(e):{ m AUy right(e):{ v EESY S nd

let % = [xcor(u),ycor(u) — 1]. Now let key(e) be the 5-tuple
key(e) = (xcor(left(e)), yeor(left(e)), £left(e) left(e) right(e), xcor(u), ycor(u)) .

By fLabc we always refer to the counter-clockwise angle between rays ba and bc with b being
the apex of the angle. It follows by our assumption that edges cannot cross vertices that if
two edges e # ¢’ have the same first three values in their key(), then ¢/ = e~ and hence their
last two values in key() cannot both be the same. Hence it follows that e = ¢’ if and only if
key(e) = key(e’). We define the total order < by lexicographic comparison of the numeric
key () values using <. For a quasi-face f € F, we define

entry(f)=ec f:e=xé foralle £ecf,

i.e., entry(f) is the minimum edge (with respect to the order <) on the quasi-face f. Such
an edge e will be called the entry edge of f. Note that this function is easy to implement
using the function succ(), and the total order < using only O(1) memory. We will use the

following function

T, if e = entry(qface(e)) and e~ = entry(qface(e™)) and e < e,
F, otherwise.

ismin(e) = {

Let ey = (up,v0) be the minimum edge in the order < . The next lemma shows that using
the function ismin() we can test for the minimum edge eg in quasi-planar subdivisions that
satisfy the Left-Neighbor Rule.

Lemma 1. If a quasi-planar subdivision G satisfies the Left-Neighbor Rule, then the function
ismin(e) = T if and only if e = ep.

Proof. The proof can be found in the Appendix A-1. d

Lemma 1 guarantees that we can test for the minimum edge e using only the basic functions
entry(), aface(), rev(), and key(). This allows us to implement the following function using

only O(1) extra memory.

qface(rev(entry(f))), if entry(f) # eg, and

NULL, otherwise.
6

parent(f) = {

Let us note that it is possible that parent(f) = f, however, we show that if G satis-
fies the Left-Neighbor Rule, then this never happen. This rule will also guarantee that
entry(parent(f)) < entry(f) if entry(f) # eg. Our algorithm will identify the edge e
and will treat gface(e) differently than all other quasi-faces.

We now define an auxiliary graph which will be used to prove the correctness of our algo-
rithm. Let G(F) = (F, E(F')) with

BE(F) = {(f,f) : parent(f) = f'} .
We prove that if G satisfies the Left-Neighbor Rule, then G(F) is a rooted tree.

Lemma 2. If a quasi-planar subdivision G satisfies the Left-Neighbor Rule, then for every
quasi-face f so that entry(f) # eo, entry(parent(f)) < entry(f).

Proof. The proof can be found in the Appendix A-2. d

Corollary 1. If a quasi-planar subdivision G satisfies the Left-Neighbor Rule, then for every
quasi-face f, parent(f) # f.

Proof. This follows directly from Lemma 2 for any f so that entry(f) # eg. For gface(ep),
by definition we have parent(qface(ep)) = NULL. O

Theorem 1. If a quasi-planar subdivision G satisfies the Left-Neighbor Rule, then the graph
G(F) is a rooted tree with the root qface(ey).

Proof. We must show that for every quasi-face f € F' there is unique (directed) path from f
to qface(eg) in G(F'). Since every quasi-face has exactly one entry edge, there cannot exist
more than one path from f to qface(ep). It remains to show that for every f € F, there
exists at least one path f to gface(ey) in G(F'). Suppose by way of contradiction that for

some f € F, there is no such path. Now consider the sequence:

C = (f, parent(f), parent(f)?, parent(f)?,... parent(f)’,...).

By our assumption parent(f)’ # qface(eg) for i > 1, hence entry(parent(f)’) # ey for
i > 1. Thus, for i > 1, entry(parent(f)**!) < entry(parent(f)’). Moreover, entry(f) #
€0, and hence entry(parent(f)) < entry(f) and hence all the terms in the sequence C' are
distinct. Thus, C is an infinite sequence of distinct quasi-faces of G. This contradicts the

assumption that G is a finite subdivision. O

3.2. The Algorithm. In this subsection, we describe Algorithm 1 which performs traversal
on any quasi-planar subdivision G. The reader may check that the algorithm is very similar
to the one in [6, 9] and in fact it uses the same technique for reporting vertices, (undirected)
edges and quasi-faces of G. However to make the algorithm self-contained, we provide all
details here. Let |ab| denote the distance between points a and b. Let ab be the direction of
the ray originating at a and containing b. Let cone(a,b,c) denote the cone with apex b, the

supporting rays passing through a and ¢, respectively, and the interior angle £abc. We will
7

assume that the bounding ray passing through a belongs to cone(a, b, ¢) but the bounding ray
passing through ¢ does not. As noted in [6], all the functions used in the algorithm can be
easily implemented using only algebraic functions. Using the results from previous section,

we can prove

Theorem 2. Algorithm 1 reports each vertex, (undirected) edge, and quasi-face of a quasi-
planar subdivision G that satisfies the Left-Neighbor Rule exactly once in O(|E|log |E|) time.

Proof. The proof can be found in the Appendix A-3. g

The Left-Neighbor Rule condition is essential for Algorithm 1 to successfully traverse quasi-
planar subdivisions. If a quasi-planar subdivision does not satisfy the Left-Neighbor Rule
condition, then the order < is not guaranteed to be a total order on edges of G and hence
there may be several locally minimal edges each playing the role of ey. Then the traversal
algorithm would traverse only a subgraph of G. For an example of a quasi-planar subdivision
with two locally minimal edges (u,v) and (x,y) see Figure 4.

FiGURE 4. The vertex u does not satisfy the Left-Neighbor Rule. Conse-
quently, the function ismin() returns T for both edges (u,v) and (z,y).

Algorithm 1 Traversal of quasi-planar subdivision G(V,E).

Input: e = (u,v) of G(V, E)

Output: List of vertices, edges, and quasi-faces of G in some order.
1: repeat {* find the minimum edge ey *}
2: e« rev(e)

3: while e # entry(gface(e)) do
4: e « succ(e)
5: end while

6: until e = ¢g

. p— left(e)

repeat {* start the traversal *}

o«

9: e« succ(e)

10: let e = (u,v) and let succ(e) = (v, w)

11: if p is contained in cone(u,v,w) then {* report u if necessary *}

12: report u

13: end if

14: if |up| < |vp| or (Jup| = |vp| and up < vp) then {* report e if necessary *}
15: report e

16: end if

17 if e = entry(qface(e)) then {* report e and return to parent of gface(e) *}
18: report gface(e)

19: e — rev(e)

20: else {* descend to children of gface(e) if necessary *}

21: if rev(e) = entry(qface(rev(e))) then

22: e < rev(e)

23: end if

24: end if

25: until e = ¢
26: report gface(eq)

4. CONCLUDING REMARKS

We have generalized a graph traversal algorithm for geometric planar subdivisions [9] (a

graph is geometric if every vertex knows its geometric coordinates). The main idea in our

algorithm is that of extending the notion of a face in planar subdivision into a closed walk

in symmetric directed graph (i.e. directed graph which with every edge (u,v) also contains

the edge (v,u)). Thus, our algorithm can traverse (in polynomial time and O(logn) space) a

much wider class of geometric graphs which satisfy a simple geometric condition. The best

known polynomial traversal algorithm for non-geometric graphs needs O(log?n) space. One

interesting problem remains: Can the geometric condition be dropped from our algorithm

by using a more sophisticated approach to define a total order on edges? If so, this would

manifest the essential difference between geometric and non-geometric graphs from the graph

traversal point of view.

[1]

2]
(3]
[4]
[5]
[6]

17
)
9

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

REFERENCES

R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff. Random walks, universal traversal
sequences, and the complexity of maze problems. In 20th Annual Symposium on Foundations of Computer
Science (San Juan, Puerto Rico, 1979), pages 218-223. IEEE, New York, 1979.

R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. An o(log*/®(n)) space algorithm for (s,t) connectivity
in undirected graphs. Journal of the ACM, 47:294-311.

D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. In Proc. of 7th Annu. ACM Sympos. Comput. Geom., pages 98-104, 1991.

G. Barnes and W. L. Ruzzo. Undirected s-t connectivity in polynomial time and sublinear space. Comput.
Complezity, 6(1):1-28, 1996/97.

P. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa. A time-space tradeoff for undirected
graph traversal by walking automata. SIAM J. Comput., 28(3):1051-1072 (electronic), 1999.

P. Bose and P. Morin. An improved algorithm for subdivision traversal without extra storage. Internat.
J. Comput. Geom. Appl., 12(4):297-308, 2002. Annual International Symposium on Algorithms and
Computation (Taipei, 2000).

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless
networks. Wireless Networks, 7:609-616, 2001.

J. Czyczowicz, E. Kranakis, N. Santoro, and J. Urrutia. Traversal of geometric planar networks using a
mobile agent with constant memory. in preparation.

M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars. Simple traversal of a subdivision without
extra storage. International Journal of Geographic Information Systems, 11:359-373, 1997.

C. Gold, U. Maydell, and J. Ramsden. Automated contour mapping using triangular element data struc-
tures and an interpolant over each irregular triangular domain. Computer Graphic, 11(2):170-175, 1977.
E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In Proc. of 11th Canadian
Conference on Computational Geometry, pages 51-54, August 1999.

F. Kuhn, R. Wattenhofe, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: Of theory and practice.
In Proc. of the 22nd ACM Symposium on the Principles of Distributed Computing (PODC), July 2003.
F. Kuhn, R. Wattenhofe, and A. Zollinger. Worst-case optimal and average-case efficient geometric ad-hoc
routing. In Proc. of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), June 2003.

D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theoret. Comput.
Sei., 7(2):217-236, 1978.

E. Nisan, E. Szemeredi, and A. Wigderson. Undirecter connectivity in o(log'-® n) space. In Proc. of 33rd
Annual Symposium on Fundations of Computer Science, pages 24-29. IEEE, October 1992.

N. Nisan. RL C SC. Comput. Complezity, 4(1):1-11, 1994.

D. Peuquet and D. Marble. Arc/info: an example of a contemporary geographic information system. In
Introductory Readings in Geographic Information Systems, pages 90-99. Taylor & Francis, 1990.

D. Peuquet and D. Marble. Technical description of the dime system. In Introductory Readings in Geo-
graphic Information Systems, pages 100-111. Taylor & Francis, 1990.

F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Texts and Monographs in
Computer Science. Springer-Verlag, New York, 1985.

10

APPENDIX

A-1 Proof of Lemma 1

Proof. Let e = (u,v). Suppose by way of contradiction that ey < e, and ismin(e) = T.
Hence e = entry(qface(e)), e~ = entry(qface(e™)) and e < e™. If e = ¢, then e; < eg, a
contradiction with the minimality of eg. Hence we may assume e # ¢ .

If left(e) = v, then obviously we must have e~ < e, a contradiction. Hence left(e) = wu.
Let pred(e) = (w,u) =: d. If u ¢ V), then by the Left-Neighbor Rule, there must exist
its neighbor x so that xcor(z) < xcor(u). Hence either xcor(w) < xcor(u), then d < e, a
contradiction, or xcor(w) = xcor(u), but then left(d) = w and since ycor(w) < ycor(u), we
have d < e, a contradiction, or finally xcor(w) > xcor(u), but then since Liuw < Liuuv, we
again have d < e, a contradiction. Hence, u € V. Since e = entry(qface(e)), Liuv < Liuw,

see Figure 5.

a) b)

FIGURE 5. The edge d = pred(e) on the quasi-face gface(e). The configura-
tion depicted in a) is possible, however the configuration depicted in b) is not
possible since d < e. Grey arrows indicate how the counter-clockwise rule is
applied to determine succ(d) = e.

By a similar argument, we can prove that left(eg) = uo, ug € V,, and Lugugvg < Lipuowo,
where (wp, up) = pred(ep).

Since e is the minimum edge and since edges are straight lines and do not cross vertices, the
vertex ug is on the outer-face of the underlying planar subgraph P. If xcor(u) = xcor(uy),
then again since edges are straight lines and do not cross vertices, the vertex u is on the
outer-face of the underlying planar subgraph P. Since the outer-face of P does not contain
any vertex in V. or any edge of G— P, ey € qface(e). However this contradicts the assumption
that entry(qface(e)) = e. Hence xcor(up) < xcor(u).

Since P is connected, there must exist a path C' in P joining ug to u. Either C contains
neither e nor d, or C' contains e but not d, or Ccontains d but not e; see Figure 6. Note that
since d = pred(e) then in the first case the neighbor of u on C must lie in between v and w

as depicted in Figure 6 a).
11

v

c)

F1GURE 6. Three cases of a mutual incidence of the path C' (bold edges) and
the edges e and d. The gray arrows represent a part of qface(e).

Since C' crosses the vertical line 7 drawn through the vertex u and since every vertex
x € qgface(e) has xcor(z) > xcor(u) and since no edge of G crosses edges of P, the edge
d ¢ gface(e), a contradiction since d = pred(e), see Figure 6 a) - c).

Next, we must show that ismin(eyp) = T. Since e(is the minimum edge in the order <, we
have eq = entry(qface(eg)) and ey < e; . It remains to show that e, = entry(qface(e;)).
This will follow instantly if we show that there is no edge e so that eg < e < e;. Suppose by
way of contradiction e exists. Since the first three coordinates in key(eg) are the same as the
first three coordinates in key(e;), the same must be true for the first three coordinates in
key(e) and, say, key(ep). However if for any two edges ¢’ and e” the first three coordinates
in key(¢’) equal to the first three coordinates in key(e”), then ¢/ = rev(e”). Hence e = ¢,
a contradiction. We conclude that e, = entry(qface(e;), and hence ismin(ey) = T. This
proves the lemma. O

A-2 Proof of Lemma 2

Proof. Suppose by way of contradiction that for some quasi-face f with entry(f) = e > e

we have entry(parent(f) > e. If e~ < e, then since entry(qface(e™)) < e~, we would
12

have entry(parent(f)) < e, a contradiction with our assumption. Hence e < e~. By our
assumption, for every edge ¢ € qface(e™), e < ¢/. We show that e~ < ¢’. Suppose by way
of contradiction that for some €’ € qface(e™), e < ¢’ < e™. Since the first three coordinates
in key(e) equal to the first three coordinates in key(e™), the same must be true for the
first three coordinates in key(e’) and key(e). It follows from this that ¢’ = rev(e) = e, a
contradiction. Hence we have proved that e~ = entry(qface(e™). In summary, we have e <
e”, e = entry(qface(e)), and e~ = entry(qface(e™)). Thus by definition, ismin(e) = T,
and by Lemma 1, e = eg, a contradiction. O

A-3 Proof of Theorem 2

Proof. The algorithm receives a pointer to an edge e of G as an input. Then the algorithm
starts to search the qface(e™) for its entry edge. When the entry edge is found it will switch to
the parent of gface(e™), and repeats the search for the entry edge in that quasi-face. Lemma
2 guarantees that either eg is found or the new entry edge is smaller (in the total order <)
than the last entry edge found. Since there is only finitely many edges in GG, eventually the
algorithm must proceed to line 6 and e will contain a pointer to the edge eg.

At line 8, the algorithm starts the traversal of G. A proof that the algorithm will report
each quasi-face of G exactly once is based of the fact that G(F) is a rooted tree with the root
eo (Theorem 1) and that our algorithm performs a depth-first search traversal on it. The
proof of this is simple and is the same as the corresponding proof in [9], hence omitted.

Our technique of reporting vertices and (undirected) edges of G is essentially the same as
the one in [6], hence we again leave out the details of proof. The proof requires a point p
that is different from any vertex of G and does not lie on any edge of G. However, the fact
that eg is the minimum edge in G and the fact that the outer face of P does not contain any
vertex in V. or any edge of G — P guarantee that the point p computed at line 7 will have
this property.

The running time analysis of Algorithm 1 are almost the same as in [6] so we only sketch
them. If we ignore the cost of the tests in lines 3, 17, and 21, then the preprocessing phase
(finding the edge eq) takes at most O(| F|) time, since each quasi-face is processed at most once
and each edge is in at most two different quasi-faces. After that, the main phase (traversal)
takes at most O(|E/|) time, since each quasi-face is traversed exactly once and each edge is in
at most two different quasi-faces. Hence the running time of the algorithm would be O(|E]|).
Since Algorithm 1 is similar enough to the planar subdivision traversal algorithm from [6],
we can use their technique to implement lines 3, 17, and 21, so that the total running time of
Algorithm 1 will be O(3_ ¢ | f|log | f[) which in worst case is O(|E|log |E]). O

13

