
Optimizing some constructions with bars: new geometric

knapsack problems
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Abstract

A set of vertical bars planted on given points of a horizontal line defines a fence composed

of the quadrilaterals bounded by successive bars. A set of bars in the plane, each having one

endpoint at the origin, defines an umbrella composed of the triangles bounded by successive

bars. Given a collection of bars, we study how to use them to build the fence or the umbrella

of maximum total area. We present optimal algorithms for these constructions. The prob-

lems introduced in this paper are related to the Geometric Knapsack problems [Arkin et al.,

Algorithmica 1993] and the Rearrangement Inequality [Wayne, Scripta Math. 1946].

Keywords: Geometric optimization; Combinatorial optimization; Inequalities; Optimal algo-

rithms.

1 Introduction

In this paper we introduce the following geometric optimization problem. Given a collection

S = {s0, s1, . . . , sn−1} of n line segments or bars with lengths `0, `1, . . . , `n−1, respectively, and a

set P = {x0 < x1 < . . . < xn−1} of n points on the x-axis, locate the segments vertically on the

given points such that each point receives a segment and the polygon with vertices the endpoints

of the segments has maximum area. See Figure 1. Notice that this problem can be seen as an

ordering problem that is built around a profit function f that assigns to every vertical segment

si the corresponding real profit f(si). The profit f(si) is given by the area of the quadrilateral

bounded by the segments si−1 and si if i ≥ 1, and 0 otherwise. The total profit of an ordering is

∗Department of Computer Science, University of Texas at Dallas, USA. besp@utdallas.edu. Partially supported
by project FEDER MEC MTM2009-08652.
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the sum of the profits of the individual segments in S. We also consider the case where P = {x0} is

composed by one point and the segments are not necessarily located vertically on x0. See Figure 2

where all segments has a common endpoint, x0. We study some variants of the problem that allow

to construct with n bars of different lengths certain geometric object of maximum area. Formally,

the problems are defined as follows.

1.1 Problems formulation

Let OX denote the x-axis. We say that a bar s is planted if s is vertical and the bottom endpoint

of s belongs to OX. Every set of n planted bars s0, s1, . . . , sn−1 (from left to right) induces an

x-monotone polygon of n + 2 vertices consisting of the bottom endpoints of s0 and sn−1, and

the top endpoints of the n bars. Such a polygon is called a fence. Given a set P of n points

x0 < x1 < . . . < xn−1 on OX and a vector (or sequence) L = 〈`0, `1, . . . , `n−1〉 of n lengths, we

denote by F (P,L) the fence induced by planted bars s0, s1, . . . , sn−1, where si has length `i and

bottom endpoint xi, for i = 0, 1, . . . , n− 1. Refer to Figure 1.

Given a set P of n points x0 < x1 < . . . < xn−1 on OX and a sequence L = 〈`0, `1, . . . , `n−1〉 of n

lengths, we study the next two problems considering fences:

The Maximum Fence problem: Find a permutation L′ of L such that the fence F (P,L′) has

maximum area.

The Maximum Convex Hull Fence problem: Find a permutation L′ of L such that the convex

hull of the fence F (P,L′) has maximum area.

OXx0 x5x1 x2 x3 x4

F

s1 s2 s3 s4s0 s5

Figure 1: The fence F is induced by the bars s0, s1, . . . , s5 planted on x0, x1, . . . , x5, respectively. If `i is

the length of si for every i then F is the fence F ({x0, . . . , x5}, 〈`0, . . . , `5〉).
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Figure 2: The umbrella U := U(Θ, L) for Θ = 〈θ0, θ1, . . . , θ7〉 and L = 〈`0, `1, . . . , `7〉, where `i is the

length of bar si for i = 0, . . . , 7.
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An umbrella is a star-shaped polygon having the origin of coordinates as center. A polygon Q is

star-shaped if it contains a point p such that for all points q of Q the straight segment joining p

and q is contained in Q. The point p is called a center of Q. Every set of n bars, each of them

having an endpoint at the origin of coordinates and such that every angle between successive bars

is less than π, induces an umbrella which has as vertices the endpoints of the bars distinct from

the origin. When considering umbrellas we assume n ≥ 3. Given an integer n, an n-partition is

any sequence of n non-negative angles so that each of them is less than π and their sum is equal to

2π. Given an n-partition Θ = 〈θ0, θ1, . . . , θn−1〉 and a sequence L = 〈`0, `1, . . . , `n−1〉 of n lengths,

the umbrella U(Θ, L) is an umbrella induced by n bars s0, . . . , sn−1 with an endpoint at the origin

and lengths `0, . . . , `n−1, respectively, such that s0, . . . , sn−1 are radially sorted in counterclockwise

order around the origin and the angle between bars si and si+1 is equal to θi for i = 0, 1, . . . , n−2.

Refer to Figure 2.

We study the following problem considering umbrellas:

The Maximum Umbrella problem: Given an n-partition Θ = 〈θ0, θ1, . . . , θn−1〉 and a sequence

L = 〈`0, `1, . . . , `n−1〉 of n lengths, find both a permutation Θ′ of Θ and a permutation L′ of L

such that the area of the umbrella U(Θ′, L′) is maximized.

1.2 Results

We show that the Maximum Fence problem can be solved in Θ(n log n) time. We prove that

this time complexity is optimal in the algebraic decision tree model by using a reduction from the

Sorting problem which has lower bound Ω(n log n) in this model [3]. The solution we propose is

related to the Rearrangement Inequality [12]. For the Maximum Convex Hull Fence problem

we present a linear time algorithm.

We show that optimal solutions of the Maximum Umbrella problem satisfy monotone proper-

ties on both the bar lengths and the sines of the angles between succesive bars. In order to do

this, we first solve a problem (called the Two Permutations problem) considering the optimal

permutation of two vectors, which is new to our knowledge. We use the Extended Rearrangement

Inequality [1] to solve such a problem. The monotone properties of the Maximum Umbrella

problem allow us to solve it in Θ(n log n) time. We prove that this time complexity is optimal in

the algebraic decision tree model by using again a reduction from the Sorting problem.

1.3 Related work: the geometric knapsack problems

Although the geometric optimization problems introduced in this paper are interesting in its own

right, independent of any applications they might find, we show that the problems can be considered

related to the geometric knapsack problems.

Knapsack problems have been extensively studied in applied mathematics [10]. These problems

are in the class of combinatorial optimization problems and the name is derived from the max-

imization problem of best selection of essentials that can fit into a bag to be carried on a tour.

One of its classical version is defined as follows. We are given n objects and a knapsack. Let wi

be the weight of object i and W be the capacity of the knapsack. If the i-th item is placed into
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de knapsack then a profit pi is earned. The objective is to fill the knapsack so that the maximum

profit is earned.

Arkin et al. [2] mapped classical knapsack problems into a new class of Geometric Knapsack

problems. For their purposes, a knapsack is a simple closed curve whose capacity is its length or the

area it encloses, and objects may be points, polygons, line segments, etc. The net profit is defined

as the sum of the values of the item enclosed by the curve minus the cost (if any) of the curve used.

Notice that in the classical Knapsack problem, the selection of an item depends upon its weight

and capacity. But in Geometric Knapsack problems, the selection of an item depends not only

upon its weight and capacity but also on the position of other items. This geometric variant leads

to a new class of algorithmic problems that can be addressed with computational geometry tools.

Moreover, with a similar mapping, it can be shown that a wide class of problems in geometric

optimization and facility location can be viewed as geometric knapsack problems. We review here

some examples.

Let us consider the Maximum Covering Location problem (MCLP), originally stated by Church

and Velle [5]. A limited number of facilities are installed and the goal is to maximize the coverage

(population covered) within a given covering distance by selecting a fixed number p of facilities.

This problem can be viewed as a geometric multiple knapsack problem as follows. The profit

is represented by the covered demand and the knapsack by a limited number of facilities to be

installed. The planar maximum covering problems, where facilities can be placed anywhere on the

plane, have also been considered. For instance, for Euclidean (rectilinear) distances, the candidate

facility locations would be the points of intersection of circles (diamonds) centered at the demand

points [6].

Another closely related problem is to locate one or more convex objects (squares, rectangles, convex

polygon, circles, etc.) to maximize the size of the subset covered. Given a set of n points with

arbitrary weight and one (or some) objects of fixed size, find the placement of the objects that

maximizes the sum of the weights of the enclosed points. Some of these variants for different

geometric objects can be found in the literature: convex polygon [7], disk and rectangle [9], unit

disks and squares for bichromatic point sets [4]. We refer to the works of Plastria [11], and Drezner

and Hamacher [8], for two comprehensive studies of covering location problems.

The problems addressed in this paper can also be viewed as a variant of the geometric multiple

knapsack problems where the profit is represented by the area of the built region by means of the

location of vertical segments. More specifically, a set of points are given on the x-axis and the goal

is to built the fence with maximum area (profit) by locating a set of bars (knapsacks) onto the

given points. As we will show in Section 5, the problems introduced in this paper lead to consider

other variants that are of interest in the combinatorial and geometric optimization area.

1.4 Outline

The paper is outlined as follows. In Section 2 we present the Rearrangement Inequality and the

Extended Rearrangement Inequality. In Section 3 the optimal running-time algorithms solving

the Maximum Fence problem and the Maximum Convex Hull Fence problem are given.

In Section 4 we study the Maximum Umbrella problem, and this section is divided into two

subsections, Subsection 4.1 and Subsection 4.2. In the former one the Two Permutations

4



problem is solved, and in the latter one the main result considering the Maximum Umbrella

problem is given. Finally, in Section 5, both the conclusions and several further research directions

are stated.

2 Preliminaries

Given 2n real values x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn, the Rearrangement Inequality [12] states that

xny1 + · · ·+ x1yn ≤ x′1y1 + · · ·+ x′nyn ≤ x1y1 + · · ·+ xnyn

for any permutation 〈x′1, x′2, . . . , x′n〉 of 〈x1, x2, . . . , xn〉.

The Rearrangement Inequality implies a straightforward solution of the following problem called

Maximum Vector Product problem: Given two vectors a, b ∈ Rn, find both a permutation

a′ = 〈a′0, a′1, . . . , a′n−1〉 of a and a permutation b′ = 〈b′0, b′1, . . . , b′n−1〉 of b such that the scalar

product a′ · b′ =
∑n−1

i=0 a
′
i · b′i is maximized.

Proposition 1 The Maximum Vector Product problem can be solved in O(n log n) time by

sorting the components of a and the components of b, i.e. a′0 ≤ a′1 ≤ . . . ≤ a′n−1 and b′0 ≤ b′1 ≤
. . . ≤ b′n−1.

Angell [1] proved a generalization of the Rearrangement Inequality called the Extended Rearrange-

ment Inequality.

Theorem 2 (Extended Rearrangement Inequality [1]) Let m ≥ 1 be an integer number and yi,1 ≤
yi,2 ≤ . . . ≤ yi,n (i = 1, 2, . . . ,m) and z1 ≤ z2 ≤ . . . ≤ zn be m + 1 sequences of n non-negative

numbers. Then:
n∑

j=1

y′1,jy
′
2,j . . . y

′
m,jzj ≤

n∑
j=1

y1,jy2,j . . . ym,jzj

for any permutation 〈y′i,1, y′i,2, . . . , y′i,n〉 of 〈yi,1, yi,2, . . . , yi,n〉, i = 1, 2, . . . ,m.

We will apply the Extended Rearrangement Inequality several times for m = 2. The proof is

provided for completeness.

Proposition 3 (2-Extended Rearrangement Inequality) Let x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn, and

z1 ≤ · · · ≤ zn be there sequences of non-negative numbers. Then:

x′1y
′
1z1 + · · ·+ x′ny

′
nzn ≤ x1y1z1 + · · ·+ xnynzn (1)

for any permutation 〈x′1, x′2, . . . , x′n〉 of 〈x1, x2, . . . , xn〉 and any permutation 〈y′1, y′2, . . . , y′n〉 of

〈y1, y2, . . . , yn〉.

Proof. Let us use induction on n. For n = 1 the result is immediate. Consider n > 1. Then we

5



have:

x′1y
′
1z1 + · · ·+ x′ny

′
nzn

= (x′1y
′
1 + · · ·+ x′ny

′
n)z1 +

x′2y
′
2(z2 − z1) + . . .+ x′ny

′
n(zn − z1) (2)

Observe that 0 ≤ z2 − z1 ≤ . . . ≤ zn − z1. Then we have from the inductive hypothesis, 0 ≤ x1 ≤
· · · ≤ xn, and 0 ≤ y1 ≤ · · · ≤ yn, that:

x′2y
′
2(z2 − z1) + . . .+ x′ny

′
n(zn − z1)

≤ x′′2y
′′
2 (z2 − z1) + . . .+ x′′ny

′′
n(zn − z1)

≤ x2y2(z2 − z1) + . . .+ xnyn(zn − z1) (3)

where 〈x′′2 , . . . , x′′n〉 and 〈y′′2 , . . . , y′′n〉 are permutations of 〈x′2, . . . , x′n〉 and 〈y′2, . . . , y′n〉, respectively,

satisfying x′′2 ≤ . . . ≤ x′′n and y′′2 ≤ . . . ≤ y′′n. We also have

(x′1y
′
1 + · · ·+ x′ny

′
n)z1 ≤ (x1y1 + · · ·+ xnyn)z1 (4)

from the Rearrangement Inequality and z1 ≥ 0. Therefore, we obtain Equation (1) from Equa-

tions (3) and (4). �

3 Fence problems

In this section we present optimal time algorithms for the Maximum Fence problem and the

Maximum Convex Hull Fence problem.

Theorem 4 The Maximum Fence problem can be solved in Θ(n log n) time, which is optimal in

the algebraic desicion tree model.

Proof. Let P be a set of n points x0 < x1 < . . . < xn−1 on OX and L = 〈`0, `1, . . . , `n−1〉 be a

sequence of n lengths. Define di = xi − xi−1 for i = 1, 2, . . . , n − 1 and let L′ = 〈`′0, `′1, . . . , `′n−1〉
be any permutation of L. The area of the fence F (P,L′) is equal to:

1

2

n−1∑
i=1

di(`
′
i−1 + `′i) =

1

2
(`′0d1 + `′1(d1 + d2) + . . .+

`′n−2(dn−2 + dn−1) + `′n−1dn−1)

Therefore, the problem is equivalent to solving the Maximum Vector Product problem for

input 〈d1, d1 + d2, d2 + d3, . . . , dn−2 + dn−1, dn−1〉 and 〈`0, `1, . . . , `n−1〉, which can be solved in

O(n log n) time by Proposition 1. This algorithm is optimal because what follows is a linear-time

reduction from the Sorting problem. Let the set X = {y0, y1, . . . , yn−1} of n elements be an

instance of the Sorting problem. We construct an instance of the Maximum Fence problem

consisting of n points x0 < x1 < . . . < xn−1 of OX such that x0 = 0 and xi = xi−1 + i for

i = 1, . . . , n− 1 and L = 〈y0, . . . , yn−1〉. Observe that d1 < d1 + d2 < d2 + d3 < . . . < dn−2 + dn−1.

Then an optimal permutation L′ = 〈y′0, y′1, . . . , y′n−1〉 of L solving the Maximum Fence problem
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satisfies y′0 < y′1 < . . . < y′n−2. Thus a sorting of X can be obtained in linear time by inserting

orderly the element y′n−1 in the sorted sequence 〈y′0, y′1, . . . , y′n−2〉. �

Theorem 5 The Maximum Convex Hull Fence problem can be solved in O(n) time.

Proof. Let P be a set of n points x0 < x1 < . . . < xn−1 on OX and L = 〈`0, `1, . . . , `n−1〉 be a

sequence of n lengths. In the following we prove that the first and last elements of any optimal

permutation of L are the two largest lengths of L. Let h0 be the largest and h1 be the second

largest elements of L.

Let L′ = 〈`′0, `′1, . . . , `′n−1〉 be any permutation of L, and 0 = i0 < i1 < . . . < ik−1 = n − 1 be the

indices such that the fence F ({xi0 , xi1 , . . . , xik−1
}, 〈`′i0 , `

′
i1
, . . . , `′ik−1

〉) is equal to the convex hull

of F (P,L′). Define d′j = xij − xij−1
for j = 1, 2, . . . , k− 1. The area of the convex hull of F (P,L′)

is equal to:

1

2

k−1∑
j=1

d′j(`
′
ij−1

+ `′ij ) ≤ 1

2
(h0 + h1)

k−1∑
j=1

d′j

=
1

2
(h0 + h1)(xn−1 − x0)

The last expression is the area of the convex hull of any fence whose two largest bars have x0 and

xn−1 as bottom endpoints, respectively. Then, by finding the two largest lengths of L, we can

build in linear time an optimal solution of the Maximum Convex Hull Fence problem. The

result thus follows. �

4 The Maximum Umbrella problem

In this section the Maximum Umbrella problem is solved. From this point forward, all subindices

are taken modulo n. Given two indices i and j, 0 ≤ i, j < n, we denote by [i, j] the set of indices

{i, i+ 1, . . . , j − 1, j}.

The Maximum Umbrella problem finds an umbrella with maximum area, built from input

collections of bar lengths and angles. If Θ′ = 〈θ′0, θ′1, . . . , θ′n−1〉 and L′ = 〈`′0, `′1, . . . , `′n−1〉 are

an optimal solution for the instance Θ = 〈θ0, θ1, . . . , θn−1〉 and L = 〈`0, `1, . . . , `n−1〉, then the

area of the umbrella U(Θ′, L′) is equal to

1

2

n−1∑
i=0

`′i · `′i+1 · sin θ′i (5)

Given an n-partition Θ = 〈θ0, θ1, . . . , θn−1〉, we denote by Θsin the sequence obtained by replacing

each element θi of Θ by sin θi, that is, Θsin = 〈sin θ0, sin θ1, . . . , sin θn−1〉.

Observe that given (Θ, L) as input, the Maximum Umbrella problem consists in rearranging the

sequences Θsin and L into the sequences Θ′sin and L′, respectively, so that the expression (5) is

maximized. A natural generalization of this rearrangement problem, called the Two Permuta-

tions problem, is studied in the next section. The algorithm to solve the Two Permutations

problem will be used to solve the Maximum Umbrella problem.
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4.1 The Two Permutations problem

Given two sequences a = 〈a0, a1, . . . , an−1〉 and b = 〈b0, b1, . . . , bn−1〉 of non-negative numbers each,

the Two Permutations problem consists in finding both a permutation a′ = 〈a′0, a′1, . . . , a′n−1〉
of a and a permutation b′ = 〈b′0, b′1, . . . , b′n−1〉 of b so that to maximize the expression

P (a′, b′) :=

n−1∑
i=0

a′ia
′
i+1b

′
i

Observe that if a∗ = 〈a′0, a′1, . . . , a′n−1〉 and b∗ = 〈b′0, b′1, . . . , b′n−1〉 form an optimal solution of the

Two Permutations problem, then for every k, 1 ≤ k < n, a′ = 〈a′k, a′k+1, . . . , a
′
n−1, a

′
0, . . . , a

′
k−1〉

and b′ = 〈b′k, b′k+1, . . . , b
′
n−1, b

′
0, . . . , b

′
k−1〉 are also an optimal solution. Furthermore, we have that

a′′ = 〈a′n−1, a′n−2, . . . , a′0〉 and b′′ = 〈b′n−1, b′n−2, . . . , b′0〉 are an optimal solution. In other words,

two optimal solutions of the Two Permutations problem are the same if one of them can be

obtained by performing a rotation and/or inversion on the other one.

A bitonic sequence is a sequence 〈x0, x1, . . . , xn−1〉 such that

x0 ≤ x1 ≤ · · · ≤ xk ≥ xk+1 ≥ · · · ≥ xn−1 (6)

for some k ∈ [0, n− 1], or a rotation of such a sequence.

The Two Permutations problem is different from problems such as the Maximum Vector

Product problem where the Rearrangement Inequality can be used directly. For example, for

input a = 〈1, 2, 3, 4〉 and b = 〈1, 1, 1, 1〉 in which both sequences are sorted, we have P (a, b) = 24.

However, for a′ = 〈1, 3, 4, 2〉 and b′ = 〈1, 1, 1, 1〉 we have P (a′, b′) = 25 > P (a, b). We prove then

the next lemma, stating that both sequences of an optimal solution must be bitonic.

Lemma 6 Every optimal solution (a∗, b∗) of the Two Permutations problem is such that both

a∗ and b∗ are bitonic.

Proof. Let a = 〈a0, a1, . . . , an−1〉 and b = 〈b0, b1, . . . , bn−1〉 be an input of the Two Permutations

problem. Consider an optimal solution (a∗, b∗) for this input. W.l.o.g. we assume a∗ = a and b∗ = b.

First, we show that a is bitonic.

Let ai and aj be a largest element and a smallest element of a, respectively. If ai ≥ ai+1 ≥ . . . ≥ aj
and ai ≥ ai−1 ≥ . . . ≥ aj then a is bitonic. Suppose to the contrary that a is not bitonic. By

symmetry we can assume that ai ≥ ai+1 ≥ . . . ≥ aj does not hold. Then there exists an element

ak, k ∈ [i + 2, j − 1], such that ak−1 < ak. Notice that ak > aj . There can be many elements

of {ai+2, ai+3, . . . , aj−1} equal to ak. Take then the last one at of such elements, thus we have

at > at+1. Let as+1 be the first element of {ai+1, ai+2, . . . , at−1} that is less than at. Then

as ≥ at > as+1, at+1, see Figure 3 (a).

We will make new sequences a′ and b′ by reversing the subsequence 〈as+1, . . . , at〉 of a and a

subsequence of b. Consider two cases by comparing the elements bs and bt. If bs ≥ bt then b′ is
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as+1

at

at+1

bs bt

as

as+1

at

at+1

bs bt

as+2
at−1

bs+1bt−1

as

as+1

at

at+1

bt bs

as+2
at−1

bs+1bt−1

(a) (b)

(c)

. . .

. . .

Figure 3: (a) A representation of the non-bitonic sequence a. The elements a0, . . . , an−1 of a are

from left to right vertical bars of lengths a0, . . . , an−1, respectively. The space in between the bars

of succesive elemens al and al+1 is labeled with bl. (b) New sequences a′ and b′ when bs ≥ bt. (c)

New sequences a′ and b′ when bs < bt.

obtained from b by reversing the subsequence 〈bs+1, bs+2, . . . , bt−1〉, see Figure 3 (b). Then

P (a′, b′)− P (a, b)

= asatbs + as+1at+1bt − asas+1bs − atat+1bt

= (at − as+1)(asbs − at+1bt)

> 0

since at > as+1, as ≥ at > at+1 and bs ≥ bt > 0. This contradicts the assumption that pair a, b

maximizes P (a, b).

Case 2. bs < bt. We reverse the subsequences 〈as+1, . . . , at〉 and 〈bs, . . . , bt〉, see Figure 3 (c). Let

a′ and b′ be the new sequences. Then

P (a′, b′)− P (a, b)

= asatbt + as+1at+1bs − asas+1bs − atat+1bt

= (atbt − as+1bs)(as − at+1)

> 0

since at > as+1, bt > bs and as ≥ at > at+1. This contradicts the assumption that the pair a, b

maximizes P (a, b).

Second, we show that b is bitonic. Again, let ai and aj be a largest element and a smallest element

of a, respectively. Observe that P (a, b) is equal to

Pi,j(a, b) + Pj,i(a, b)

where

Pi,j(a, b) =aiai+1bi + ai+1ai+2bi+1 + . . .+ aj−1ajbj−1,

Pj,i(a, b) =ajaj+1bj + aj+1aj+2bj+1 + . . .+ ai−1aibi−1.
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Since P (a, b) is maximum and aiai+1 ≥ ai+1ai+2 ≥ . . . ≥ aj−1aj we conclude by the Rearrangement

Inequality that

bi ≥ bi+1 ≥ . . . ≥ bj−1. (7)

Similarly, since P (a, b) is maximum and ajaj+1 ≤ aj+1aj+2 ≤ . . . ≤ ai−1ai, we conclude by the

Rearrangement Inequality that

bj ≤ bj+1 ≤ . . . ≤ bi−1. (8)

Equations (7) and (8) imply that the sequence b is bitonic. The lemma follows. �

Let (a∗, b∗) be an optimal solution of the Two Permutations problem. Lemma 6 states that

the sequence a∗ is bitonic. There are exponentially many bitonic sequences of size n. Next, we

show that there are bitonic sequences a∗ satisfying some properties up to rotations and inversions.

We say that the solution (a∗, b∗) is alternating if a∗ = 〈. . . , a6, a4, a2, a0, a1, a3, a5, . . .〉 and b∗ =

〈. . . , b5, b3, b1, b0, b2, b4, b6, . . .〉, where a0 ≥ a1 ≥ . . . ≥ an−1, b0 ≥ b1 ≥ . . . ≥ bn−1, and a0 and b0

are at the same position in a∗ and b∗, respectively. Note that if (a∗, b∗) is alternating then both

a∗ and b∗ are bitonic.

Lemma 7 There always exists an alternating optimal solution of the Two Permutations prob-

lem.

Proof. Consider an input of the the Two Permutations problem, consisting of a permutation of

the elements a0 ≥ a1 ≥ . . . ≥ an−1 and a permutation of the elements b0 ≥ b1 ≥ . . . ≥ bn−1.

We assume w.l.o.g. that a0 is at position 0 of any bitonic permutation of a, thus a1 must be at posi-

tion either 1 or −1. Assume w.l.o.g. the former case. Let a∗ denote the sequence 〈. . . , a4, a2, a0, a1,
a3, a5, . . .〉 and b∗ denote the sequence 〈. . . , b5, b3, b1, b0, b2, b4, . . .〉, where a0 and b0 are at the same

position in a∗ and b∗, respectively. Sequence a∗ holds what we call the alternating condition: for

i = 2, . . . , n− 1, ai is at alternating position −d i2e if i is even or at alternating position d i2e if i is

odd. Observe that every alternating permutation of a is equal to a∗.

We show by induction on j ∈ [0, n− 1] that, for every j, there is an optimal solution of the Two

Permutations problem such that a0, a1, . . . , aj are in alternating positions. By Lemma 6 this

holds for j = 0. To prove the induction step, we consider an optimal solution (a, b) of the Two

Permutations problem such that a0, a1, . . . , aj−1 are in alternating positions. We assume that j

is odd since the case of even j can be treated similarly. If aj is at the alternating position then we

are done. Suppose that another element ak < aj , k > j, is at the alternating position of aj . Since

a is bitonic by Lemma 6, it must have the form

〈. . . , aj , aj−1, . . . , a4, a2, a0, a1, a3 . . . , aj−2, ak, . . .〉.

Let bt be the element of b that is at the same position as aj in a, and br be the element of b that

is at the same position as aj−2 in a. Let 〈β1, β2〉 be a permutation of 〈bt, br〉 such that β1 ≥ β2.

Let a′ be the sequence

〈. . . , ak, aj−1, . . . , a4, a2, a0, a1, a3 . . . , aj−2, aj , . . .〉

which is obtained from a by first reversing the subsequence 〈aj−1, aj−3, . . . , aj−4, aj−2〉 and then
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reversing the whole a. If bt ≥ br then let b′ denote the sequence b. Otherwise, let b′ denote the

sequence obtained by swapping the elements bt and br in b. Note then that P (a′, b′) − P (a, b) is

equal to

akaj−1β2 + aj−2ajβ1 − (ajaj−1bt + aj−2akbr)

= akaj−1β2 + ajaj−2β1 − (ajaj−1bt + akaj−2br)

Since ak < aj , aj−1 ≤ aj−2, and β2 ≤ β1, it follows from the definitions of β1, β2 and the 2-

Extended Rearrangement Inequality that the last expression is greater than or equal to zero. Then

P (a′, b′) ≥ P (a, b), implying that (a′, b′) is an optimal solution. When j = n − 1, then a′ is

alternating and a′ = a∗.

We now proceed to prove that (a∗, b∗) is an optimal solution.

Let (a∗, b′) be an optimal solution, where b′ = 〈. . . , b′5, b′3, b′1, b′0, b′2, b′4, b′6, . . .〉 and the position of

b′0 is the same as a0 in a∗. Observe that

P (a∗, b′) = a0a1b
′
0 + a0a2b

′
1 + a1a3b

′
2 + a2a4b

′
3 + a3a5b

′
4 + . . .

Since a0a1 ≥ a0a2 ≥ a1a3 ≥ a2a4 ≥ a3a5 ≥ . . . and P (a∗, b′) is maximum for all permutations b′

of b, we must have b′0 ≥ b′1 ≥ . . . ≥ b′n−1 by the Rearrangement Inequitably. Hence, (a∗, b∗) is an

optimal solution and the result follows. �

We make the observation that Lemma 7 cannot be strengthen to state that every optimal solution

is alternating. Indeed, consider the instance a = 〈6, 5, 5, 5, 5, 5, 4〉 and b = 〈1, 1, 1, 1, 1, 1, 1〉. Then

a∗ = 〈5, 5, 5, 6, 5, 4, 5〉 and b∗ = b form a non-alternating optimal solution. It is not hard to see,

by using arguments similar to those used in Lemma 7’s proof, that if all elements of input a are

different, then every optimal solution is alternating.

Theorem 8 The Two Permutations problem can be solved in Θ(n log n) time, which is optimal

in the algebraic desicion tree model.

Proof. We can sort both a and b in O(n log n) time and obtain the solution described in Lemma 7.

The algorithm is optimal because there is a linear time reduction from the sorting problem to the

Two Permutations problem. The reduction is as follows. For every instance of the Sorting

problem, consisting of a set X = {x0, x1, . . . , xn−1} of n elements, we build the instance a =

〈x0, x1, . . . , xn−1〉 and b = 〈1, 1, . . . , 1〉 of the Two Permutations problem. By Lemma 6, in

the optimal solution (a∗, b∗) to the Two Permutations problem for input (a, b), a∗ satisfies the

bitonic property of Equation (6). The sorting of X can then be obtained in O(n) time from a∗. �

4.2 Back to the Maximum Umbrella problem

Let an instance of the Maximum Umbrella problem consist of the n-partition Θ = 〈θ0, θ1, . . . , θn−1〉
and the sequence L = 〈`0, `1, . . . , `n−1〉. Observe from Equation (5) that solving the Maxi-

mum Umbrella problem for this instance is equivalent to solving the Two Permutation prob-

lem for the instance a = L and b = Θsin. Let (Θ′, L′) be an optimal solution of the Maxi-

mum Umbrella problem for the instance (Θ, L). It also follows from Lemma 6 that the se-
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quences Θ′sin and L′ are bitonic. Furthermore, from Lemma 7, it holds that Θ′ and L′ can have

the form Θ′ = 〈. . . , θ3, θ1, θ0, θ2, θ4, . . .〉 and L′ = 〈. . . , `′4, `′2, `′0, `′1, `′3, . . .〉, respectively, where

sin θ′0 ≥ sin θ′1 ≥ . . . ≥ sin θ′n−1, `′0 ≥ `′1 ≥ . . . ≥ `′n−1, and θ′0 and `′0 are at the same position in Θ′

and L′, respectively. Hence we arrive to the next results:

Lemma 9 For input Θ = 〈θ0, θ1, . . . , θn−1〉 and L = 〈`0, `1, . . . , `n−1〉, where sin θ0 ≥ sin θ1 ≥
. . . ≥ sin θn−1 and `0 ≥ `1 ≥ . . . ≥ `n−1, an optimal solution of the Maximum Umbrella problem

consists of the sequences Θ′ = 〈. . . , θ3, θ1, θ0, θ2, θ4, . . .〉 and L′ = 〈. . . , `4, `2, `0, `1, `3, . . .〉, where
θ0 and `0 are at the same position in Θ′ and L′, respectively.

Theorem 10 The Maximum Umbrella problem can be solved in Θ(n log n) time, which is op-

timal in the algebraic desicion tree model.

5 Conclusions and further research

In this paper, we have introduced and solved new geometric optimization problems related to the

Geometric Knapsack problems [2]. Some variants and extensions of the problems studied are

of interest for further research. On one hand, some open problems related to umbrellas include:

• With the same input (Θ, L) of the Maximum Umbrella problem, find both a permutation

Θ′ of Θ and a permutation L′ of L so that to maximize the area of the convex hull of the

umbrella U(Θ′, L′).

• Given (Θ, L), find a permutation L′ of L so that the area of the umbrella U(Θ, L′) is maxi-

mized. In other words, if angles and lengths are given, and angles must have a fixed order,

find a permutation of the lengths that induces the umbrella of maximum area.

• Given L, find both a n-partition Θ and a permutation L′ of L so that the umbrella U(Θ, L′)

has maximum area. Here we have the freedom of selecting both the permutation of lengths

and the permutation of angles.

• Given L, find a n-partition Θ so that umbrella U(Θ, L) has maximum area. Note that this

variant is a restricted version of the previous one.

On the other hand, the fence problems can be extended to three dimensions as follows: We define a

tent as a polyhedron with the following properties: One of its faces called base is a convex polygon

contained in the xy-plane; the faces adjacent to the base are vertical trapezoids with at least two

right angles; is z-monotone (i.e. any line vertical to the xy-plane intersects the interior of at most

two faces of the tent); and the projection of its skeleton on the xy-plane is a triangulation of its

base. Refer to Figure 4.

Let T be a tent. We call node every vertex of T not in the base of T . The orthogonal projections of

the nodes of T on its base is called the ground points of T . The vertical segments joining the nodes

of T with their corresponding ground points are called the bars of T . Let G = {p0, p1, . . . , pn−1} be

a set of n ground points in the xy-plane and L be a sequence of n bar lengths. For any permutation

L′ = 〈`′0, `′2 . . . , `′n−1〉 of L, we denote by T (G,L′) the tent generated by planting a bar of length

`′i on the ground point pi for i = 0, 1, . . . , n − 1. The optimization problems related to tents that

we leave for further research are the following ones:
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xy-plane

Figure 4: Example of a tent with seven ground points and seven bars. Ground points are denoted by tiny

disks and nodes are denotes by crosses.

• Given a set G of n ground points and a sequence L of n bar lengths, find a permutation L′

of L so that the volume of the tent T (G,L′) is maximized.

• Given a set G of n ground points and a sequence L of n bar lengths, find a permutation L′

of L so that the volume of the convex hull of the tent T (G,L′) is maximized.
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