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Abstract

For every n ∈ N, there is a planar graph G = (V,E) with n vertices and an injective map
π : V → R2 such that in any crossing-free straight-line drawing of G, at most O(n.4965) vertices
v ∈ V are at position π(v). This improves on an earlier bound of O(

√
n) by Goaoc et al. [8].

1 Introduction

A straight-line drawing of a graph G = (V,E) is a representation of G in the plane where the
vertices V are mapped to distinct points in the plane, and each edge in E is mapped to a line
segment between the corresponding vertices. A straight-line drawing is uniquely determined by an
injective map π : V → R2. A geometric graph is a graph G = (V,E) together with a straight-line
drawing π : V → R2 in the plane. A straight-line drawing is crossing-free if no two edges intersect,
except perhaps at a common endpoint. Every planar graph has a crossing-free straight-line drawing
by Fáry’s Theorem [7], however, not all straight-line drawings are crossing-free.

Suppose we are given a planar graph G = (V,E) and a straight-line embedding π : V → R2

(with possible edge crossings). The process of moving the vertices of G to new positions π′ : V → R2

to obtain a crossing-free straight-line drawing is called the untangling of (G, π). A vertex v ∈ V is
fixed in the untangling if π(v) = π′(v).

In this paper we study the following problem: For an integer n ∈ N, what is the maximum
number f(n) such that every planar geometric graph with n vertices can be untangled such that
at least f(n) vertices are fixed.

The first question on untangling planar geometric graphs was posed by Mamoru Watanabe in
1998: Is it true that every polygon P with n vertices can be untangled in at most εn steps, for some
absolute constant ε < 1, where in each step, we move a vertex of G to a new location. Watanabe’s
question was proved to be false by Pach and Tardos [14]. They showed that every polygon with
n vertices can be untangled in at most n −

√
n moves, and there are n-vertex polygons where no

more than O((n log n)2/3) vertices can be fixed. Recently, Cibulka [5] proved that every n-vertex
polygon can be untangled fixing Ω(n2/3) vertices,

The problem of untangling planar geometric graphs was studied by Goaoc et al. [8]. They
proved f(n) ≤

√
n+2 by constructing drawings of the planar graphs P2 ∗Pn−2 with n vertices such

that at most
√
n+ 2 vertices are fixed in any untangling. Here Pk denotes a path with k vertices;

and for two graphs, G and H, the join G∗H consists of the vertex-disjoint union of G and H and all
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edges between V (G) and V (H), see Fig. 1. Kang et al. [13] and Ravsky and Verbitsky [15] explored
several families of n-vertex graphs where no more than O(

√
n) vertices can be fixed. Bose et al. [2]

devised an algorithm untangles any geometric graph with n vertices while fixing (n/3)1/4 vertices,
which proves f(n) ≥ (n/3)1/4.

In this note, we improve the upper bound for f(n) to O(n1/(3−log23 22)) ⊂ O(n.4965). We con-
struct n-vertex planar geometric graphs for infinitely many values of n ∈ N such that any untan-
gling fixes at most O(n1/(3−λ)) vertices, where λ is the the shortness exponent of the family of
3-connected cubic planar graphs. The exact value of the shortness parameter λ is not known, the
currently known best lower bound is λ ≥ log23 22 ≈ 0.9858 by Grünbaum and Walther [9]. Any
improvement on the lower bound for λ would immediately improve our upper bound for f(n).

Organization. In Section 2, we discuss two key ingredients of our construction: (i) the shortness
exponent of cubic polyhedral graphs, and (ii) permutations with certain special properties related
to the Erdős-Szekeres theorem. In Section 3, we present a family of planar geometric graphs and
prove f(n) ∈ O(n1/(3−log23 22)). We conclude in Section 4 by establishing a correspondence between
the shortness parameter of cubic polyhedral graphs and the stabbing number of triangulations.

2 Preliminaries

Dual graphs of triangulations. The value of f(n) is attained for edge-maximal planar graphs
with n vertices, since a planar graph with more edges has fewer crossing-free straight-line embed-
dings. The edge-maximal planar graphs are called triangulations. Note that in every crossing-free
drawing of an edge-maximal planar graph, every face (including the outer face) is bounded by three
edges. It follows that every triangulation is 3-connected. By Euler’s formula, a triangulation with
n ≥ 3 vertices has exactly 3n−6 edges and and 2n−4 faces (including the outer face). By Steinitz’s
theorem, every triangulation with n ≥ 4 vertices is a polyhedral graph, that is, it is a 3-connected
planar graph, and it is the 1-skeleton of a convex polytope in R3. Every polyhedral graph G has a
well-defined dual graph G∗ (independent of the plane embedding), corresponding to the 1-skeleton
of the dual polytope. If G is a triangulation with n ≥ 4 vertices, then G∗ is a cubic polyhedral
graph with 2n− 4 nodes and 3n− 6 edges.

Stabbing number of triangulations and dual cycles. The following observation is crucial
for our construction.

Observation 1 Let T be a polyhedral graph. Suppose that a line L stabs the faces f1, . . . , fk (in
this order) in a crossing-free straight-line drawing of T . Then (f∗1 , . . . , f

∗
k ) is a simple cycle in the

dual graph T ∗.

In Section 3, we will construct a planar graph G from two triangulations, S and T . Specifically, we
plug a copy of S in each face of T . We then draw G in the plane such that the vertices of every copy
of S are on a line L. If the dual graph T ∗ is not Hamiltonian, then in any crossing-free straight-line
embedding of G, the line L will miss at least one face of T . If L misses a face f of T , then none of
the vertices can be fixed in the copy of S plugged into f . In the next few paragraphs, we review
the currently known best bounds on the maximum cycles in the dual graphs of triangulations.
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In Section 4, we establish a somewhat surprising converse of Observation 1, and show that if
(f∗1 , . . . , f

∗
k ) is a simple cycle in the dual graph T ∗ of a polyhedral graph T , then T has a crossing-free

straight-line drawing such that a line L stabs the faces f1, . . . , fk in this order.

Maximum cycles in cubic polyhedral graphs. In an attempt at proving the Four Color
Theorem, Tait [16] conjectured in 1884 that every cubic polyhedral graph is Hamiltonian. Tutte [18]
found a counterexample with 44 vertices in 1946. The smallest known counterexample, due to
Bernette, Bosák, and Lenderberg, has 38 vertices, and it is known that there is no counterexample
with 36 or fewer vertices [10]. Using the smallest known counterexample to Tait’s conjecture, one
can build a cubic polyhedral graph with Θ(n) vertices for every n ∈ N in which every cycle has
at most O(nlog37 36) ⊂ O(n0.9925) vertices. Using similar techniques, Grünbaum and Walther [9]
constructed a cubic polyhedral graph with Θ(n) vertices for every n ∈ N in which every cycle has
at most O(nlog23 22) ⊂ O(n0.9859) vertices.

The shortness exponents. The shortness exponent of a family of graphs was introduced by
Grünbaum and Walther [9]. For a graph G, let V (G) denote the set of vertices of G and let h(G)
be the number of vertices in a longest cycle in G (also known as the circumference of G). The
shortness exponent of an infinite family G of graphs is

λ(G) = lim inf
log h(Gn)

log |V (Gn)|

over all infinite sequences of graphs Gn ∈ G where limn→∞ |V (Gn)| = ∞. This means that there
are arbitrarily large graphs G ∈ G that contain a cycle of length |V (G)|λ(G)−ε for any fixed ε > 0.

For example, the shortness exponent is 1 for the family of Hamiltonian graphs, and 0 for
the family of forests. The shortness exponent of cubic polyhedral graphs is not known. The
currently best lower bound, due to Bilinski et al. [1], is λ ≥ x ≈ 0.7532, where x is the real root of
41/x− 31/x = 2. The best upper bound is λ ≤ log23 22 ≈ 0.9858 due to Grünbaum and Walther [9].

Monotone subsequences. Erdős and Szekeres [6] showed that every permutation of [n] =
{0, 1, . . . , n − 1} contains a monotonically increasing or degreasing subsequence of length at least
d
√
ne, and this bound is the best possible. The lower bound is attained on many different permu-

tations. The best known construction consists of d
√
ne monotonically increasing subsequences of

consecutive elements, where the minimum element of each subsequence is larger than the maximum
element of the next. We will use a permutation where the monotone sequences “spread out” more
evenly. In a permutation (σ1, σ2, . . . , σn), we define the spread of a subsequence (σj1 , σj2 , . . . , σjk),
1 ≤ j1 < j2 < . . . . < jk ≤ n, to be jk − j1.

Lemma 1 For every m ∈ N, there is a permutation πn of [n] = [4m] such that

• the length of every monotone subsequence is at most 2m =
√
n; and

• the spread of every monotone subsequence of length k ≥ 2 is at least k2+2
6 .

Proof. We construct the permutation πn by induction on m. For m = 1, let π4 = (2, 3, 0, 1) and
observe that it has the desired properties. Assume that πn = (σ1, . . . , σn) is a permutation of [n]
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with the desired properties. We construct a permutation π4n of [4n] by replacing each σi with the
4-tuple

(4σi + 2, 4σi + 3, 4σi + 0, 4σi + 1).

Let L be a monotone subsequence of length k in π4n. Note that L has at most two elements
from each 4-tuple. The sequence of these 4-tuples corresponds to a monotone subsequence of πn,
which we denote by L′. The length of L′ is at least k/2, with equality iff L contains exactly two
elements from each of the 4-tuples involved. By induction, the length of L′ is k/2 ≤ 2m. Hence, we

have k ≤ 2m+1, as required. If the length of L′ is exactly k/2, then its spread is at least (k/2)2+2
6 in

πn, and so the spread of L is at least 4( (k/2)2+2
6 )− 1 = k2+2

6 . If the length of L′ is more than k/2,

then its spread is at least (k/2+1)2+2
6 , and the spread of L is at least 4( (k/2+1)2+2

6 ) − 1 ≥ k2+2
6 , as

required. �

3 Upper Bound Constructions

Theorem 1 We have f(n) ∈ O(n1/(3−λ)), where λ is the shortness exponent of the family of cubic
polyhedral graphs.

Proof. For every n ∈ N, we construct planar graph G = (V,E) with Θ(n) vertices and a straight
line drawing π : V → R2 such that in any untangling of G, at most O(n1/(3−λ)) vertices are fixed.
Let κ = 1/(3− λ).

Figure 1: Triangulation S = P2 ∗ P5.

Construction. We first construct the planar graph G = (V,E). There is a cubic polyhedral graph
T ∗ with Ω(nκ) vertices such that every cycle in T ∗ has at most O(nκλ) vertices. The dual graph of
T ∗ is a triangulation with Ω(nκ) vertices such that in any crossing-free straight-line drawing of T ,
any line stabs at most O(nκλ) triangular faces.

Let S be the join P2∗Ps+1 of two paths with 2 and s+1 vertices, respectively, where s = Θ(n1−κ)
and s is a power of 4 (see Fig. 1). Note that S has exactly s interior vertices, which have a
natural order along an interior path. We construct G by plugging in a copy of S into each face
of T . Denote the copies of S by Si, for i = 1, 2, . . . ,Θ(nκ). The total number of vertices of G is
Θ(nκ + nκ · n1−κ) = Θ(n).

Next, we describe a straight-line drawing of G. Embed the vertices of the triangulation T
arbitrarily in general position above the x-axis. Embed the interior vertices of S1 into integer
points {0, 1, . . . , s − 1} × {0} on the x-axis such that their natural order is permuted by πs from
Lemma 1. The interior vertices of Si, for each i > 1, are embedded into a translated copy of this
permutation, translated along the x-axis by δi for some small 0 < δ � n−κ.
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Bounding the number of fixed vertices. Consider a crossing-free straight-line drawing of
G. The Θ(nκ) vertices of T may be fixed. It is sufficient to consider the interior vertices of Si,
i = 1, 2, . . . ,Θ(nκ). Suppose that `i interior vertices of Si are fixed, for i = 1, 2, . . . ,Θ(nκ). Since
the x-axis intersects at most O(nκλ) triangles of T , all but at most O(nκλ) values of `i are zero.

Consider now a triangulation Si where `i > 0. Note that Si contains a sequence of s + 1
nested triangles that share a common edge (the horizontal edge in Fig. 1). In any straight-line
drawing of Si (independent of the choice of the outer face), at least (s + 1)/2 of these triangles
form a nested sequence. Hence, at least `i/2 fixed interior vertices of Si are vertices in a sequence
of nested triangles in the crossing-free straight-line drawing of G. The intersection of the x-axis
with a sequence of nested triangles is a line segment. It can be partitioned into two directed
segments, with opposite directions, such that each of them is directed towards the deepest point
in the arrangement of nested triangles. At least `i/4 fixed points of Si lie on the same directed
segment, and these points must form a monotone sequence along the x-axis. Furthermore, the
elements of this monotone subsequence are all contained in the largest triangle from the nested
sequence of triangles in Si, therefore, their convex hull is disjoint from the convex hulls of similar
sequences in any other Sj , j 6= i.

By Lemma 1, the spread of the monotone subsequence of length at least `i/4 is at least (`2i +
32)/96. Hence these fixed points “occupy” an interval of length (`2i + 32)/96 on the x-axis. As
noted above, the convex hulls of monotone sequences from distinct copies of S are disjoint, and so
we have

Θ(nκ)∑
i=1

`2i + 32

96
≤ 2s. (1)

Recall that at most O(nκλ) values of `i are nonzero. By Jensen’s inequality, the sum
∑Θ(nκ)

i=1 `i
is maximized if all nonzero values of `i are equal. Suppose, by relabeling the copies of S if necessary,
that `i = ` for i = 1, 2, . . . ,Θ(nκλ); and `i = 0 for all other i. In this case, Inequality (1) becomes
Θ(nκλ) · `2 ≤ Θ(n1−κ), or ` ∈ O(n(1−κ(1+λ))/2). Therefore, the number of fixed vertices is at most

Θ(nκ)∑
i=1

`i ≤ Θ(nκλ) · ` = Θ(n(1+κ(λ−1))/2) = Θ(nκ),

as required. �

Combining Theorem 1 with the upper bound λ ≤ log23 22 by Grünbaum and Walther [9], we
obtain the following.

Corollary 1 f(n) ∈ O(n1/(3−log23 22)) ⊂ O(n.4965).

4 Stabbing number of triangulations

In this section, we prove the converse of Observation 1: if T is a polyhedral graph and (f∗1 , . . . , f
∗
k )

is a simple cycle in the dual graph T ∗, then T has a crossing-free straight-line drawing such that a
line stabs the faces f1, . . . , fk in this order. We construct the required straight-line embedding of
T incrementally, based on the following two lemmas.
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Recall that a near-triangulation is a planar graph such all faces are triangles with the possible
exception of one face, which is considered to be the outer face. For example, every triangula-
tion is a near-triangulation, where the outer face is also triangular. Tutte [17] proved that every
near-triangulation has a straight-line embedding such that the outer face is mapped to a given con-
vex polygon. This was extended by Hong and Nagamochi [11] to arbitrary star-shaped polygons
(Lemma 2 below). Star-shaped polygons are defined in terms of visibility. Two points, p and q,
are mutually visible with respect to a simple polygon P , if the a relative interior of the segment pq
lies in the interior of P . The kernel of P , denoted ker(P ), is the set of all points on the boundary
and in the interior of f from which all vertices of f are visible. A polygon is star-shaped if it is has
a non-empty kernel.

Lemma 2 (Hong and Nagamochi [11]) Let G be a polyhedral graph where the outer face is bounded
by a cycle with t vertices (v1, v2, . . . , vt); and let (p1, p2, . . . , pt) be a star-shaped polygon with k
vertices. Then G has a crossing-free straight-line embedding π : V → R2 such that π(vi) = pi for
i = 1, 2, . . . , t.

If T is a polyhedral graph embedded in the plane, then a simple cycle C∗(f∗1 , . . . , f
∗
k ) of the

dual graph can be represented by a simple closed curve γ = γ(C∗) that visits faces f1, . . . , fk of T
in this order. For an inductive argument, it is convenient to work with such a closed curve γ in an
arbitrary embedding of T .

Lemma 3 Let T = (V,E) be a 3-connected near-triangulation, and let π : V → R2 be a crossing-
free straight-line embedding of T such that the outer face is (v1, v2, . . . , vt). Let γ be a closed Jordan
curve that does not pass through any vertex of T and crossesk distince edges (e1, e2, . . . , ek) in this
order, where e1 = v1v2 and ek = vτvτ+1 for some 2 ≤ τ < t. Let P = (p1, p2, . . . , pk) be a star-
shaped simple polygon such that a line L intersects the interior of ker(P ) and crosses sides p1p2

and pτpτ+1 (but no other side of P ).
Then T has a crossing-free straight-line drawing π′ : V → R2 such that π′(vi) = pi for i =

1, 2, . . . , k, and the edges crossed by line L are e1, . . . ek in this order.

Proof. We proceed by induction on k, the number of edges crossed by γ. Assume that k ≥ 3, and
Lemma 3 holds for any k, 3 ≤ k′ < k.

Refer to Fig. 2. Edges e1 = v1v2 and e2 are two sides of a triangle f2, and so they have a
common endpoint. Assume without loss of generality that e2 = v2w, with w 6= v1. Denote by
Tw the subgraph of T induced by the vertex set {v1, v2, . . . , vk, w}. The graph Tw consists of the
chordless cycle (v1, v2, . . . , vk), and a star between w and some vertices of {v1, v2, . . . , vk} (including
edges v1w and v2w). All bounded faces of Tw are incident to w, and they are each bounded by
chordless cycles. Hence the subgraph of T lying in the interior or on the boundary of each bounded
face of Tw is a 3-connected near-triangulation.

We are now ready to construct a crossing-free straight-line drawing π′. First, embed the vertices
of Tw as follows. Let x be an intersection point of L and the interior of ker(P ), and note that a
small neighborhood of x is contained in ker(P ). Let π′(vi) = pi for i = 1, . . . , k, and let π′(w)
be a point sufficiently close to x on the same side of line L as p3. If w is sufficiently close to x,
then all bounded faces of Tw are star-shaped, and whenever L crosses a bounded face of Tw, it also
intersects the kernel of that face. Therefore, we can apply induction on the subgraphs of T lying
in each bounded face F of Tw. If γ traverses a face of T that lies in the bounded face F of Tw, we
can apply the induction hypothesis, otherwise we apply Lemma 2. �

6



1 2

3

4

5

6

7

8

9

1011

P

ker(P )

1

2

3

4

5

6

7

8

L

x
9

12

1

2

3

4

5

6

7

8

L

9

10

11
12

γ

Figure 2: Left: a near-triangulation T , curve γ is a closed Jordan curve corresponding to simple cycle in the
dual graph T ∗. Middle: A star-shaped polygon P , with a shaded kernel ker(P ). Vertex w = v9 is embedded
at a small neighborhood of a point x ∈ L ∩ int(ker(P )). Right: we apply induction in each bounded face of
Tw.

We are now ready to prove the converse of Observation 1.

Theorem 2 Let T = (V,E) be a polyhedral graph on n ≥ 4 vertices and let C∗ = (f∗1 , . . . , f
∗
k ) be

a simple cycle in the dual graph T ∗. Then T has a crossing-free straight-line drawing π : V → R2

such that f1 is the outer face.

Proof. We are given a polyhedral graph T = (V,E) and a simple cycle C∗ = (f∗1 , . . . , f
∗
k ) in

the dual graph T ∗. Fix an arbitrary crossing-free straight-line drawing π : V → R2 of T such
that the outer face is f1. Let γ be a closed Jordan curve that corresponds to the simple cycle
C∗ = (f∗1 , . . . , f

∗
k ), that is, γ traverses faces f1, . . . , fk in this order in the embedding π. Augment

T with dummy edges to a near-triangulation T ′ by triangulating all bounded faces if necessary. We
may assume that γ traverses every triangular face at most once. Denote the sequence of edges of T ′

crossed by γ by e1, . . . , ek′ , where e1 and ek′ are adjacent to the outer facer. If face f1 has t vertices
then let P = (v1, . . . , vt) be an arbitrary convex polygon with t vertices. By Lemma 3, T ′ has a
crossing-free straight-line embedding such that the outer face is f1 and a line L crosses the edges
e1, . . . , ek′ in this order. After deleting the dummy edges, we obtain a crossing-free straight-line
embedding of T such that the outer face is f1 and the line L stabs the faces f1, . . . , fk in this order,
as required. �

Acknowledgement. We are grateful to Alexander Ravsky and Oleg Verbitsky for directing us
to the currently known best upper bounds for the shortness exponent of cubic polyhedral graphs.
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