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ABSTRACT

In this paper we study on-line local routing algorithms for communication networks. Our
algorithms take advantage of the geometric properties of planar networks. We pay special
attention to on-line local routing algorithms which guarantee that a message reaches its
destination. A message cosists of packets of data that have to be sent to a destination
node, i.e. the message itself plus a finite amount of space used to record a constant amount
of data to aid it in its traversal, e.g. the address of the starting and destination nodes, a
constant number of nodes visited, etc. Local means that at each site we have at our disposal
only local information regarding a node and its neighbors, i.e. no global knowledge of the
network is available at any time, other that the network is planar and connected. We then
develop location aided local routing algorithms for wireless communication networks, in
particularly cellular telephone networks.

—

1.1 INTRODUCTION

The vertices of a geometric network are points on the plane, and its edges straight
line segments joining them. A geometric network is called planar if it contains no
two edges that intersect other than perhaps at a common end point. In the remainder
of this paper we will assume that all our graphs, unless otherwise stated, are planar
geometric networks.

Our main goal here is that of studying routing algorithms that take advantage of
the location of the nodes of geometric networks. Early papers on routing ignored
information regarding the physical location of the nodes of the networks. With the
advent of new technologies such as Global Positioning Systems (GPS), the user’s
location is becoming common information that can be retrieved from GPS, and then
used to develop better routing algorithms.
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For other applications, we can use the location of a node as part of its label. This
can in turn can be used to obtain efficient routing algorithms. In many applications,
such as wireless cellular networks, Internet service providers, and others, many nodes
have fixed locations. Networks such as cellular communication networks consist of
a backbone sub-network, and a collection of mobile users that move around freely,
and connect through fixed switches. In many of these networks, the use of global
positioning systems allow users to obtain the physical location or geographical
information regarding users and switches of a network [18].

Information regarding the position of the nodes of a network can, and indeed has
been used to obtain new routing schemes that take advantage of this information. A
number of papers proposing various types of routing algorithms using geographical
data have been written [3, 5, 7, 12, 14, 15, 22, 27].

In this paper we will focus on on-line or local routing algorithms for connected
planar geometric graphs that take advantage of the physical location of the nodes
of the networks. We are mainly interested in on-line routing algorithms that use
geographic information on the nodes and links of a network, and that in addition
guarantee that messages arrive at their destination. Our approach differs from
similar algorithms studied in the literature, particularly in the context of wireless
networks in which numerous routing schemes have been developed and mostly tested
experimentally.

Some earlier work such as [11], and [7] proposed location-based algorithms based
on various notions of progress. Most of those routing protocols do not neces-
sarily guarantee message delivery. Indeed some of the routing schemes proposed
recently [2, 15] can also lead to the same problem [27]. In many cases, e.g. flood-
ing routing algorithms [10], multiple redundant copies of the messages are sent in
the hope that one of them will eventually reach its destination. Sending multiple
copies of messages creates other problems such as network congestion. We believe
that the usage of algorithms such as those presented here will become paramount as
the number of users of communication networks increases. In [14] another method
called compass routing is proposed that is shown to work for some specific types
of networks. Briefly if a message is located at a node v, and wants to reach node
t, compass routing will send it to the neighbor u of v such that the slope of the
line segment joining u to v is the closest to the slope of the segment joining v to
t. While occasionally compass routing may fall into infinite loops failing to reach
t, it works for some important classes of networks. In particular it is shown in [14]
that compass routing works correctly for Delaunay Triangulations, a result that will
be useful to develop routing algorithms for wireless communication networks. We
will also study variations of compass routing that will enable it to work for planar
geometric networks.

In [20] similar problems are studied. Shortest-path problems are studied in which
a map is not known in advance. They seek dynamic decision rules that optimize the
worst-case ratio of the distance covered to the length of the shortest paths.

We will show how our results can be used to solve some routing problems in
wireless communication networks which are not necessarily planar. To this end, we
will develop fully distributed techniques to calculate planar sub-networks of wireless
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communication networks. This will be achieved by using some standard tools in
Computational Geometry. The resulting algorithms are also guaranteed to deliver
messages to their destination. Some future lines of research are pointed out at the
end of our paper.

It has been proposed that the algorithms presented here can be consider as a
safeguard method to be used when heuristic techniques such as those proposed
in [13, 11, 19], and [28] fail. We argue that algorithms of the type of those presented
here should become standard, as they not only guarantee that a message gets to its
destination, but also tend to create little overhead, which in turn solves other problems
arising from broadcasting multiple copies of data messages.

1.1.1 Local position aided routing algorithms

In this section we present some of the basic ideas used in the development of our
location aided or geometric on-line routing algorithms on planar geometric networks.
Some of these algorithms have been refined and improved, yet the basic ideas remain.
By a location aided or geometric on-line routing algorithms, we understand an
algorithm that works under the following restrictions:

1. A typical message contains the location of its starting point s, the location
of its destination t, the contents of the message, e.g. the text of an e-mail,
and perhaps a constant amount of extra storage in which a constant amount
of information regarding some data concerning the route that a message has
traveled is recorded.

2. At each node of the network, a processor has some geographical local infor-
mation concerning only the location of its neighbors.

3. Based only on the local information stored at the nodes of the network, the
location of s, t and the information stored in the extra memory the message
itself carries, a decision is taken regarding on where to send the message next.

It is not straightforward to develop a routing algorithm that satisfies the above
restriction, and yet guarantees that a message arrives at its destination. In fact
in some earlier papers on the subject [5], seemed to assume that their algorithms
guaranteed message delivery!

Our objective in this section is to develop such an algorithm.

1.1.2 Compass routing

Suppose that we want to travel from an initial vertex s to a destination vertex t of
a planar geometric network. Assume that all the information available to us at any
point in time is:

1. The coordinates of our starting and destination points.

2. Our current position.
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3. The directions of the edges incident with the vertex where we are located.

With this information available, we define the following rule to route in geometric
networks:

Compass Routing Starting at s, we will in a recursive way choose and traverse
the edge of the geometric graph incident to our current position and with the slope
closest to that of the line segment connecting the vertex we are standing at to t. Ties
are broken randomly.

s

a

b

c t

Fig. 1.1 Traveling from s to t using compass routing will follow the path s, a, b, c, t.

Unfortunately compass routing does not guarantee arrival to the destination. This
is evident if we use it in geometric graphs with low connectivity, or graphs with
non-convex faces. What is somewhat unexpected is that compass routing fails even
in geometric graphs in which all of its faces are triangles and the external face is
bounded by a convex polygon The geometric graph shown in Figure 3 has these
properties, and yet when we try to use compass routing to go from s = u0 to t we
get stuck around the cycle with vertex set {v0, wi; i = 0, . . . , 3}. The graph consists
of two concentric squares, one of which is rotated slightly. The line segment t − vi

is orthogonal to the edge joining vi to wi, and wi lies on t − vi, i = 0, . . . , 3. It is
now easy to see that under these conditions, if we are at point vi (resp. wi), compass
routing will choose next the edge connecting vi to wi (resp. wi to vi+1, addition
taken mod 4). Similar constructions exist in which instead of using a square to start
the construction, we use a regular polygon with n vertices, n ≥ 4.

At this point, we would like to mention that our initial motivation to study on-line
location aided routing algorithms arose from an interesting routing scheme called
interval routing introduced by Santoro and Khatib [23]. The goal in interval routing
is that of finding, whenever possible, a labeling of the vertices of a graph with the
integers 1, . . . , n such that for every vertex i of the graph, we can assign to each
edge ei incident to i a disjoint interval [ai, bi] with the property that if j ∈ [ai, bi]
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Fig. 1.2 Compass routing will not reach t from ui, i = 0, . . . , 3.

then there is a shortest path from i to j containing ei. Each edge is assigned two
intervals, one at each of its endpoints. See Figure 1.3. One of the motivations for
interval routing was that of having a fast and efficient method to forward information
received at a node whose final destination was not the node itself. Interval routing
reduces the forwarding problem to that of performing a simple search on the set of
intervals assigned to the edges incident to a vertex of a graph. Observe that compass
routing also reduces the forwarding problem to a search problem. It is easy to see
that as is the case with compass routing, most graphs have no labeling scheme that
supports interval routing. However when interval and compass routing work, they
give efficient, fast and reliable routing protocols.

We say that a geometric graph G supports compass routing if for every pair of its
vertices s and t, compass routing (starting at s) produces a path from s to t.

The Delaunay triangulation D(Pn) of a set Pn of n points on the plane, is the
partitioning of the convex hull of Pn into a set of triangles with disjoint interiors such
that

• the vertices of these triangles are points in Pn

• for each triangle in the triangulation, the circle passing through its vertices
contains no other point of Pn in its interior.

It is well known that when the elements of Pn are in general circular position,
i.e. no four of then are co-circular, then D(Pn) is well defined. For the rest of this



vi ROUTING WITH GUARANTEED DELIVERY IN GEOMETRIC AND WIRELESS NETWORKS

6

0

1
2

3
4

5

7
8

[1,8]

[0,0]
[1,3]

[4,0]

[2,0]

[1,1]

[3,0]

[5,8]

[0,4]
[5,6]

[7,7]
[8,6]

[7,4]

[5,5][6,0]

[2,2]

Fig. 1.3 An interval routing scheme for a tree with 9 vertices. The intervals are taken mod 9.
For example interval [7,4] consists of the elements {7, 8, 0, 1, 2, 3, 4}

section we will assume that Pn is in general circular position. The next result was
proved in [14]:

Theorem 1.1.1 Let Pn be a set of n points on the plane; then D(Pn) supports
compass routing.
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Fig. 1.4 Routing on Delaunay triangulations.

The proof relies on the fact that each time we move along an edge, the Euclidean
distance to t always decreases. This can be easily seen from Figure 1.4. Indeed
suppose that s and t are not adjacent, and that the line connecting s to t intersects
the triangle with vertices {s, x, y} of D(Pn). By definition t does not belong to
the circle passing through s, x, and y, and the segment s − t intersects the segment
x − y. It is easy to see now that if compass routing chooses to move from s to
say x, then the distance from x to t is strictly smaller than the distance from s to
t. Experimental results by P.R. Morin [17] show that the average link and distance
dilatation of compass routing on Delaunay triangulations of randomly generated point
sets in the unit square with up to 500 points, are less than 1.4 and 1.1 respectively.
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1.1.3 Compass routing on convex subdivisions

A geometric graph is called a convex subdivision if all its bounded faces are convex,
and the external face is the complement of a convex polygon. By randomizing
compass routing Morin [17] was able to guarantee message delivery not only in
triangulations, but in convex subdivisions.

Morin’s modification is indeed simple. Suppose that we want to reach vertex t,
and that a message is currently located at vertex v. Let cw(v) and ccw(v) be the
two vertices defined as follows: cw(v) is the vertex adjacent to v that minimizes
the clockwise angle 6 cwt, v, u, and ccw(v) the vertex adjacent to v that minimizes
the counterclockwise angle 6 ccwt, v, u, see Figure 1.5. Random Compass sends the
message with equal probability to ccw(v) or to cw(v).

t
v

ccw(v)

cw(v)

Fig. 1.5 Defining ccw(v) and cw(v).

Morin proved:

Theorem 1.1.2 Random Compass guarantees message delivery in any convex sub-
division.

It should be mentioned that the previous result guarantees that using Random
Compass a message will eventually reach its destination. In theory it could take an
arbitrarily large amount of time before a message arrives at its destination. However
experimental results also presented in [17] show that Random Compass performs
well on the average. Its dilation is better than 1.7 for Delaunay triangulations with
up to 500 vertices. No experimental results are reported for convex subdivisions.

Although Compass routing fails for triangulations, we now show how a slight
modification of it will enable it to work in convex subdivisions.

Compass Routing on Convex Subdivisions: [14]

The following procedure stops upon reaching t.

1. Starting at s determine the face F incident to s intersected by the line segment
s − t. Pick any of the two edges of F incident to s, and start traversing the
edges of F until we find the second edge of F intersected by s − t.
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2. Update F to be the second face of the geometric graph containing u− v on its
boundary.

3. Traverse the edges of our new F until we find a second edge x− y intersected
by s − t. At this point we update F again as in the previous point. We iterate
our current step until we reach t

s

t

F
3

F
1

F
2

Fig. 1.6 Routing using Compass routing on convex subdivisions.

To prove that a message always gets to its destination, we proceed as follows:
Let us label the faces intersected by the line segment joining s to t by {F1, . . . , Fm}
according to the order in which they are intersected. Initially F = F1. Observe
that each time we update F we move from Fi to Fi+1 for some i. Thus eventually
we reach the face Fm containing t, and thus t. See Figure 1.6. Observe that our
algorithm traverses each edge of our graph at most once. It is easy to see that if the
faces of a geometric graph are not convex, the previous algorithm may fall into a
loop. In the next section we show how to modify compass routing so that it will also
work for arbitrary geometric graphs. The price we pay is that in general the paths
we have to traverse might increase substantially in length. This is a consideration to
have in mind when using the results in the next subsection for particular applications.

1.1.4 Compass routing on geometric graphs

Observe first that the vertices and edges of any geometric graph G induce a partition-
ing of the plane into a set of connected regions with disjoint interiors, not necessarily
convex, called the faces of G. The boundary Bi of each of these faces is a closed
polygonal in which we admit some edge of G to appear twice. For example in the
graph shown in Figure 1.7, in the polygonal bounding the external face the edge u−v

appears twice.

Suppose now that we want to travel from a vertex s to a vertex t of G. As before,
calculate the line segment joining s to t, and determine the face F = F0 incident to
s intersected by s − t. We now traverse the polygonal determined by F0. Each time
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we intersect s − t at a point p, while traversing the boundary of F (0), we calculate
the distance from p to s. Upon returning to s, (unless we reach t, in which case
we stop) all we need to recall is the point p0 at which the polygonal bounding F0

intersects s− t, which maximizes its distance to s. We now traverse the boundary of
F0 again until we reach p0, at which point we update F to be the second face whose
boundary contains p0. We repeat our procedure using p0 and our new F instead of
s and F (0). It is straightforward to see that we eventually reach t. Notice that each
edge of our graph is contained in at most two faces. Observe that if the edges of
a face are traversed, they are traversed at most twice. It follows that each edge is
traversed at most four times. A slight modification can be used so that each edge is
traversed at most three times [3].

s

t

u

v

Fig. 1.7 Routing using Compass routing on non-convex subdivisions. Observe that the length
of the path traversed from s to t is considerably longer than the one we obtained for convex
subdivisions.

Thus we have proved:

Theorem 1.1.3 [14] There exists a local information routing algorithm on geometric
graphs which guarantees that we reach our destination. Moreover, our algorithm is
such that we traverse a linear number of edges.

It should be pointed out that the main objective of the algorithms presented in
this section is that of finding on-line local routing algorithms that guarantee message
delivery. This implicitly implies that the routes generated by our algorithms will be
in general not the shortest paths connecting s to t. In fact it is straightforward to see
that for every k we can construct examples in which the lengths of the paths found
by our algorithms are k times longer than that of the shortest paths connecting s to t.
This can be achieved if the length of a path is measured either in terms of the sum of
the lengths of its edges, or the number of edges used in the path. In practice however
this does not happen often. For details see [3, 17].
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We stress this point here, as there are numerous papers in which many ad hoc
routing techniques are proposed and tested for numerous types of communication;
ad hoc, wireless etc. networks. A common parameter measure in most of these
methods is the success rate, i.e. the percentage of messages that arrive at their
destination. In addition, many of these algorithms broadcast multiple copies of a
message in hope that at least one of them will reach its destination. Observe that
this creates a large overload in terms of the amount of traffic generated. In time this
will become an important factor to be avoided. In contrast our algorithms have a
100% success rate, while sending only one copy of each message. In the next section
we will show how the results presented in this section are used to obtain routing
algorithms in wireless communication networks such as cellular telephone networks.
Our algorithms guarantee message delivery.

1.2 APPLICATIONS TO AD HOC WIRELESS COMMUNICATION
NETWORKS

A wireless communication network can be modeled as a set of radio stations located
on a set of points Pn = {p1, . . . , pn}, each of which has associatedto it a real number
ri, its transmission power, such that two points pi, pj are connected if their distance
is smaller than the minimum of {ri, rj}. We now address the problem of developing
an on-line local routing algorithm for wireless cellular communication networks.

Cellular telephone communication networks consist of a set of fixed, low-powered
radio stations located on Pn = {p1, . . . , pn}, all with the same transmission power
r(i) = 1, and a set of mobile users that move freely. The mobile users connect to the
network through the closest fixed radio station. The set of fixed radio stations defines
a unit wireless communication network UW (Pn) on Pn in which two elements
p, q ∈ Pn are connected if their distance is at most 1.

We proceed now to develop an on-line local routing algorithm for unit wireless
communication networks. Observe first that UW (Pn) is not necessarily planar. For
instance if Pn consists of 12 points contained within a circle of radius 1, UW (Pn) is
not planar.

In order to use the results presented in the previous section, we should be able to
extract a planar subnetwork from any UW (Pn). Two requirements must be satisfied
by the method we use to extract the planar subgraph to fully ensure its functionality
for real life applications:

• If a cellular communication network is connected, the resulting planar subgraph
must be connected.

• We must have a local protocol so that each node of the network can decide
in a consistent manner which neighbor connections to keep, and ensure that
collectively, and without the need to communicate, the set of edges chosen
individually by the nodes of the network form a planar graph.
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The necessity for the second condition follows from our desire to have fully
distributed protocols that avoid the use of any kind of centralized protocols.

The problem of extracting or even deciding if a graph contains a planar connected
subgraph is a well known NP-complete problem [16]. FortunatelyUW (Pn) networks
always have such a subgraph, and in fact, finding it is relatively straightforward.

The key to our result arises from the use of Gabriel garphs [1]. Given two
points p and q on the plane, let C(p, q) be the circle passing through them such that
the line segment joining p to q is a diameter of C(p, q). Given a set of n points
Pn = {p1, . . . , pn} on the plane, the Gabriel graph of Pn is the graph whose set of
vertices is Pn in which two points u and v of Pn are adjacent iff the C(p, q) contains
no other points of Pn. Let G′(Pn) be the graph with vertex set Pn such that two
vertices p and q are adjacent in G′(Pn) iff C(p, q) contains no other points of Pn

and p and q are adjacent in W (Pn), that is G′(Pn) is the intersection of the Gabriel
graph of Pn with W (Pn). The following result was proved in [3]:

Theorem 1.2.1 If UW (Pn) is connected then G′(Pn) is also connected.

The easiest proof of this result proceeds as follows. Let p and q be such that they
are adjacent in UW (Pn), and there is no path connecting them in G′(Pn). Suppose
further that their distance is the smallest possible among all such pairs of points in
Pn. Since p and q are not connected in G′(Pn), C(p, q) contains at least a third point
r ∈ Pn. Observe that the distances from r to p and q are smaller than the distance
from p to q, and thus there is a path P ′ in G′(Pn) connecting r to p and a path P ′′

connecting r to q. The concatenation of these paths produces a path from p to q in
G′(Pn). Our result follows.

It is obvious that each node p in UW (Pn) can decide locally which of its neighbors
in UW (Pn) should be its neighbors in G′(Pn). It simply collects the locations from
all its neighbors (i.e. the elements of Pn at distance at most 1 from p, and tests for each
q of them if the circle C(p, q) is empty. This can be done using standard algorithms
in Computational Geometry in O(k ln k) where k is the number of neighbors of p in
UW (Pn) [21].

We now have the general tools to obtain an on-line local routing algorithm on
unit wireless communication networks. First find G′(Pn), and then use the routing
algorithm in Theorem 1.1.3 to send messages. The calculation of G′(Pn) can be
done only once, or periodically in cases where node failures can happen.

Thus we have proved;

Theorem 1.2.2 There exists an on-line routing algorithm for unit wireless communi-
cation networks that guarantees delivery. Any message takes at most a linear number
of steps to reach its destination.

Some fine-tuning of the algorithm resulting from the previous theorem was done
in [3, 17]. These papers make some modifications to compass routing for arbitrary
planar geometric networks that improve the worst case scenario regarding the number
of edges traversed. The reader interested in the details can consult [3, 17]. In the
same papers, experimental results that show that in practice our algorithms perform
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well are available. Details of simulations of our algorithms, and variations of them
are also included in those papers.

Another routing algorithm using similar ideas to those presented before, was
presented in [3]. The main idea of their algorithm is as follows. Start routing using a
greedy type algorithm such as compass routing, until a problem arises, e.g. none of the
possible candidates to visit next is strictly closer to our destination than our current
position. At this point, we switch to a routing algorithm that guarantees delivery, e.g.
use geometric routing on arbitrary geometric graphs, until a node strictly closer to
our destination than our current position is reached. At this point we switch back to
compass routing.

Another modification to our algorithms was presented in [5] in which they use
some of the edges in UW (Pn) that are not present in the Gabriel graph of Pn as
shortcuts. Further they also use and refine techniques presented in [29] that make
use of independent sets of vertices of graphs to obtain an algorithm that in practice
performs very well.

Stojmenovic and Lin [27] also studied a hybrid single path/flooding algorithm that
guarantees delivery of a message.

1.3 DELAUNAY TRIANGULATIONS

A common approach in serial network design is that of finding good architectures that
guarantee good performance, e.g. hypercubes, and then building networks that satisfy
those architectures. In many applications of wireless communication networks, the
cost of the actual radio stations is relatively cheap. In those applications the best way
to tackle routing problems is suggested by Theorem 1.1.1. If a wireless network, not
necessarily a unit wireless communication network, does not contain the Delaunay
triangulation as a subgraph, make it do so. This can be achieved in two different ways.
In the first we can deploy extra stations until our objective is reached. The second
method to achieve this would be to increase, if the conditions of our application allow
us to do so, the transmission power of our stations until the Delaunay triangulation
is contained in our wireless communication network. In some instances, e.g. when
all nodes of a wireless communication network can communicate with each other,
the Delaunay triangulation D(Pn) can be calculated locally [25]. This follows from
that fact that once we have calculated the Voronoi diagram of Pn we also have the
Delaunay triangulation [1]. Once the Delaunay trinagulation is calculated, for each
vertex we can define for each element of Pn the parameter Del(pi) to be the distance
from pi to its furthest neighbor inD(Pn). This value can then be used to determine the
minimum transmission power required by pi so that its furthest neighbor in D(Pn)
can be reached. This in turn will help save energy which is essential in several
wireless communication networks [4, 26, 8]. In case that direct communication is
not possible, it is still possible to run a distributed set-up procedure to calculate
Del(pi) by forwarding the position of all the nodes of our network to each vertex.
The value of Del(pi) can then be used to adjust the transmission power of pi.
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1.4 CONCLUSIONS

In this paper we reviewed on-line routing algorithms on geometric networks and
wireless communication networks that guarantee that a message arrives to its des-
tination. In practice our algorithms are also competitive, and have the advantage of
sending only one copy of a message, in contrast to many of the algorithms developed
to date. The algorithms presented here thus eliminate the overhead created by many
existing algorithms that send multiple copies of a message, that in turn may lead to
traffic problems. A more ample review of routing algorithms in ad hoc networks
appears in this issue [24].
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